如圖,已知拋物線y=ax2-4x+c經(jīng)過點A(0,-6)和B(3,-9),

(1)求出拋物線的解析式;

(2)寫出拋物線的對稱軸方程及頂點坐標(biāo);

(3)點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關(guān)于拋物線的對稱軸,對稱,求m的值及點Q的坐標(biāo);

(4)在滿足(3)的情況下,在拋物線的對稱軸上尋找一點M,使得△QMA的周長最。

答案:
解析:

  解:(1)依題意有

  即  2分.

    4分.

  ∴拋物線的解析式為:  5分.

  (2)把配方得,

  ∴對稱軸方程為  7分.

  頂點坐標(biāo)  10分.

  (3)由點在拋物線上.

  有  12分.

  即

  ∴

  或(舍去)  13分.

  ∴

  ∵點、均在拋物線上,且關(guān)于對稱軸對稱.

  ∴  15分.

  (4)連接,直線與對稱軸相交于點

  由于兩點關(guān)于對稱軸對稱,由軸對稱性質(zhì)可知,此時的交點,能夠使.

  得△的周長最小  17分.

  設(shè)直線的解析式

  ∴有

  ∴

  ∴直線的解析式為:  18分.

  設(shè)點

  則有  19分.

  此時點能夠使得△的周長最小  20分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運動,連接PQ、CB,設(shè)點P運動的時間為t秒.

(1)求a的值;

(2)當(dāng)四邊形ODPQ為矩形時,求這個矩形的面積;

(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.

(4)當(dāng)t為何值時,△PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(9分)如圖,已知拋物線yx2+bx-3a過點A(1,0),B(0,-3),與x軸交于另一點C.

(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點P,使△PBC為以點B為直角頂點的直角三角形,
求點P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點Q,使以P,Q,B,C為頂點的四邊形
為直角梯形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市中考模擬數(shù)學(xué)卷 題型:解答題

(本題9分)如圖,已知拋物線yax2bx+3的圖象與x軸交于A、B兩點,與y軸交于點C,且點C、D是拋物線上的一對對稱點.

【小題1】(1)求拋物線的解析式;
【小題2】(2)求點D的坐標(biāo),并在圖中畫出直線BD;
【小題3】(3)求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當(dāng)x滿足什么條件時,上述二次函數(shù)的值大于該一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州工業(yè)園區(qū)九年級下學(xué)期學(xué)科調(diào)研數(shù)學(xué)卷 題型:解答題

(9分)如圖,已知拋物線yx2+bx-3a過點A(1,0),B(0,-3),與x軸交于另一點C.

(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點P,使△PBC為以點B為直角頂點的直角三角形,
求點P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點Q,使以P,Q,B,C為頂點的四邊形
為直角梯形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省興平市九年級上學(xué)期期末練習(xí)數(shù)學(xué)卷 題型:解答題

(本題滿分10分)

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(—1,0)、C(0,—3)兩點,與x軸交于另一點B.

1.(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;

2.(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo);

3.(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標(biāo).

 

 

查看答案和解析>>

同步練習(xí)冊答案