【題目】課外興趣小組活動時,老師提出了如下問題:

如圖,在中,若,,求邊上的中線的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長,使得,再連接(或?qū)?/span>繞點逆時針旋轉(zhuǎn)得到),把、集中在中,利用三角形的三邊關(guān)系可得,則

[感悟]解題時,條件中若出現(xiàn)中點”“中線字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.

解決問題:受到的啟發(fā),請你證明下列命題:如圖,在中,邊上的中點,,于點,于點,連接.求證:,若,探索線段、之間的等量關(guān)系,并加以證明.

【答案】證明見解析;,理由見解析.

【解析】

(1)可按閱讀理解中的方法構(gòu)造全等,把CFBE轉(zhuǎn)移到一個三角形中求解.
(2)(1)中的全等得到∠C=∠CBG.∵∠ABC+∠C=90°,∴∠EBG=90°,可得三邊之間存在勾股定理關(guān)系;

延長,使得,連接、

(或把繞點逆時針旋轉(zhuǎn)得到),

,,

中,,即

,則,

,

,即,

∴在中,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,且面積是24的垂直平分線分別交邊于點,若點邊的中點,點為線段上一動點,則周長的最小值為(

A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蜀山區(qū)植物園是一座三面環(huán)水的半島園區(qū),擁有梅園、桂花園、竹園、木蘭園、水景園等示范區(qū)。為了種植植物,需要從甲乙兩地向園區(qū)A,B兩個大棚配送營養(yǎng)土,已知甲地可調(diào)出50噸營養(yǎng)土,乙地可調(diào)出80噸營養(yǎng)土,A棚需70噸營養(yǎng)土,B棚需60噸營養(yǎng)土,甲乙兩地運往A,B兩棚的運費如下表所示(表中運費欄“元/噸”表示運送每噸營養(yǎng)土所需費用)。

運費(元/噸)

A

B

甲地

12

12

乙地

10

8

運往A、B兩地的噸數(shù)

A

B

甲地

x

50-x

乙地

1)設(shè)甲地運往A棚營養(yǎng)土x噸,請用關(guān)于x的代數(shù)式完成上表;

2)設(shè)甲地運往A棚營養(yǎng)土x噸,求總運費y(元)關(guān)于x(噸)的函數(shù)關(guān)系式(要求寫出變量取值范圍);

3)當(dāng)甲、乙兩地各運往A、B兩棚多少噸營養(yǎng)土?xí)r,總運費最?最省的總運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校是乒乓球體育傳統(tǒng)項目校,為進(jìn)一步推動該項目的發(fā)展.學(xué)校準(zhǔn)備到體育用品店購買甲、乙兩種型號乒乓球若干個,已知3個甲種乒乓球和5個乙種乒乓球共需50元,2個甲種乒乓球和3個乙種乒乓球共需31.

1)求1個甲種乒乓球和1個乙種乒乓球的售價各是多少元?

2)學(xué)校準(zhǔn)備購買這兩種型號的乒乓球共200個,要求甲種乒乓球的數(shù)量不超過乙種乒乓球的數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABy軸,垂足為B,∠BAO30°,將△ABO繞點A逆時針旋轉(zhuǎn)到△AB1O1的位置,使點B的對應(yīng)點B1落在直線y=-x上,再將△AB1O1繞點B1逆時針旋轉(zhuǎn)到△A1B1O2的位置,使點O1的對應(yīng)點O2落在直線y=-x上,依次進(jìn)行下去…若點B的坐標(biāo)是(0,1),則點O2020的縱坐標(biāo)為__________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別相切于點和點.點和點分別是上的動點,沿平移.的半徑為,.下列結(jié)論錯誤的是(

A. B. 的距離為

C. ,則相切 D. 相切,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知內(nèi)接于,平分,交于點,過的切線與的延長線交于點

求證:;

,,求的長;

在題設(shè)條件下,為使是平行四邊形,應(yīng)滿足怎樣的條件(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為5 厘米,對角線BD長8厘米.點P從點A出發(fā)沿AB方向勻速運動,速度為1厘米秒;點Q從點D 出發(fā)沿DB 方向勻速運動,速度為2 厘米/秒:P、Q 同時出發(fā),當(dāng)點Q與點B重合時,P、Q停止運動,設(shè)運動時間為t秒,解答下列問題:

(1)當(dāng)t為何值時,PBQ為等腰三角形?(2)當(dāng)t為何值時,PBQ的面積等于菱形ABCD面積的

(3)連接AQ,在運動過程中,是否存在某一時刻t,使∠PQA=∠ABD?若存在,請求出t值; 若不存在,請說明理蟲:

(4)直線PQ 交線段BC于點M,在運動過程中,是否存在某一時刻t,使BM:CM=2:3?若存在,請求出t值; 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線ly軸交于點D.

(1)求拋物線的函數(shù)表達(dá)式;

(2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且BCGBCD面積相等,求點G的坐標(biāo);

(3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.

查看答案和解析>>

同步練習(xí)冊答案