【題目】在中,、的垂直平分線相交于三角形內(nèi)一點,下列結(jié)論中,錯誤的是( )
A. 點在的垂直平分線上
B. 、、都是等腰三角形
C.
D. 點到、、的距離相等
【答案】D
【解析】
根據(jù)垂直平分線的性質(zhì)得:O也是AC垂直平分線上的點,則O到三個頂點的距離相等,可以得△AOB、△BOC、△COA都是等腰三角形,且根據(jù)等邊對等角得:∠OAB=∠ABO,∠OBC=∠OCB,∠OAC=∠OCA,再由三角形內(nèi)角和定理得:∠OAB+∠OBC+∠OCA=90°;
三角形的角平分線的交點到三邊的距離相等.
如圖:
A、連接AO、BO、CO,
∵AB、BC的垂直平分線相交于三角形內(nèi)一點O,
∴AO=BO,BO=CO,
∴AO=CO,
∴點O在AC的垂直平分線上,
所以選項A正確;
B、∵AO=BO,BO=CO,AO=CO,
∴△AOB、△BOC、△COA都是等腰三角形,
所以選項B正確;
C、∵AO=BO,BO=CO,AO=CO,
∴∠OAB=∠ABO,∠OBC=∠OCB,∠OAC=∠OCA,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠OAB+∠OBC+∠OCA=90°,
故選項C正確;
D、∵點O是三邊垂直平分線的交點,
∴OA=OB=OC,
但點O到AB、BC、CA的距離不一定相等;
所以選項D錯誤;
本題選擇錯誤的,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考察冰川的融化狀況,一支科考隊在某冰川上設(shè)定一個以大本營O為圓心,半徑為4km的圓形考察區(qū)域,線段P1P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動,若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是s= n2﹣ n+ .以O(shè)為原點,建立如圖所示的平面直角坐標系,其中P1、P2的坐標分別為(﹣4,9)、(﹣13、﹣3).
(1)求線段P1P2所在直線對應(yīng)的函數(shù)關(guān)系式;
(2)求冰川邊界線移動到考察區(qū)域所需的最短時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)請直接寫出于點B關(guān)于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數(shù)是( )
A.70°
B.65°
C.60°
D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和( )
A.大于0
B.等于0
C.小于0
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,為原點,四邊形是長方形,點,的坐標分別為,,是的中點,點在邊上運動,當(dāng)是腰長為5的等腰三角形時,點的坐標為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解射擊運動員小杰的集訓(xùn)效果,教練統(tǒng)計了他集訓(xùn)前后的兩次測試成績(每次測試射擊10次),制作了如圖所示的條形統(tǒng)計圖.
(1)集訓(xùn)前小杰射擊成績的眾數(shù)為 ;
(2)分別計算小杰集訓(xùn)前后射擊的平均成績;
(3)請用一句話評價小杰這次集訓(xùn)的效果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com