如圖,PA是⊙O的切線,切點為A,∠APO=36°,則∠AOP的度數(shù)為______度.
∵PA是⊙O的切線,切點為A,
∴OA⊥PA,∠OAP=90°.
又∠APO=36°,
∴∠AOP=180°-90°-36°=54°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的兩條切線,切點分別為A、B若直徑AC=12cm,∠P=60°,求弦AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當直線DF與⊙O相切時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA為⊙O的切線,A為切點,PBC為割線,∠APC的平分線PF交AC于點F,交AB于點E.
(1)求證:AE=AF;
(2)若PB:PA=1:2,M是
BC
上的點,AM交BC于D,且PD=DC,試確定M點在BC上的位置,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖i,半圓O為△ABC的外接半圓,AC為直徑,D為劣弧
BC
上的一動點,P在CB的延長線上,且有∠BAP=∠BDA.
(1)求證:AP是半圓O的切線;
(2)當其它條件不變時,問添加一個什么條件后,有BD2=BE•BC成立?說明理由;
(3)如圖ii,在滿足(2)問的前提下,若OD⊥BC與H,BE=2,EC=4,連接PD,請?zhí)骄克倪呅蜛BDO是什么特殊的四邊形,并求tan∠DPC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,P為AB延長線上的一個動點,過點P作⊙O的切線,設切點為C.
(1)當點P在AB延長線上的位置如圖(1)所示時,連接AC,作∠APC的平分線,交AC于點D,請你測量出∠CDP的度數(shù);
(2)當點P的位置發(fā)生改變時(如圖(2)),由以上的過程形成的角∠CDP的度數(shù)是否發(fā)生變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,切點分別為A、B,點C在⊙O上,如果∠P=50°,那么∠ACB等于( 。
A.40°B.50°C.65°D.130°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖⊙O的直徑AB與弦AC的夾角為30°,切線CD與AB的延長線交于點D.若⊙O的半徑為3,則CD的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,劣
BC
=
BE
弧BDCE,連接AE并延長交BD于D.
求證:
(1)BD是⊙O的切線;
(2)AB2=AC•AD.

查看答案和解析>>

同步練習冊答案