已知拋物線y=-x2+2mx-m2-m+3
(1)證明拋物線頂點一定在直線y=-x+3上;
(2)若拋物線與x軸交于M、N兩點,當OM•ON=3,且OM≠ON時,求拋物線的解析式;
(3)若(2)中所求拋物線頂點為C,與y軸交點在原點上方,拋物線的對稱軸與x軸交于點B,直線y=-x+3與x軸交于點A.點P為拋物線對稱軸上一動點,過點P作PD⊥AC,垂足D在線段AC上.試問:是否存在點P,使S△PAD=
14
S△ABC?若存在,求出點P的坐標;若不存在,請說明理由.
分析:(1)先根據(jù)拋物線的解析式,用配方法得出拋物線頂點的表達式,然后代入直線y=-x+3中即可得出所證的結論.
(2)已知:OM•ON=3,根據(jù)一元二次方程根與系數(shù)的關系可知:方程0=-x2+2mx-m2-m+3中,m2-m+3=±3,據(jù)此可求出m的值,然后可根據(jù)OM≠ON和方程的△>0將不合題意的m值舍去,由此可求出拋物線的解析式.
(3)可先根據(jù)拋物線和直線AC的解析式求出A、C點的坐標.進而可求出AC的長.可先設PD的長為x,那么可用x表示出CD,AD的長,進而可表示出△APD的面積,根據(jù)S△PAD=
1
4
S△ABC,即可得出x的值,也就能求出CD、PD的長,進而可求出CP的長,也就不難得出P點的坐標了.
解答:精英家教網解:(1)y=-x2+2mx-m2-m+3=-(x-m)2-m+3,
∴頂點坐標為(m,-m+3),
∴頂點在直線y=-x+3上.

(2)∵拋物線與x軸交于M、N兩點,
∴△>0,
即:(2m)2-4(m2+m-3)>0,
解得:m<3,
∵OM•ON=3,
∴m2+m-3=±3,
當m2+m-3=-3時,m2+m=0,
∴m=0,m=-1,
∴當m=0時,y1=-x2+3(與OM≠ON矛盾,舍),
∴m=-1,y1=-x2-2x+3,
當m2+m-3=3時,m2+m-6=0,
∴m=2,m=-3,
∴y2=-x2+4x-3,y3=-x2-6x-3.

(3)∵拋物線與y軸交點在原點的上方
∴y=-x2-2x+3,
∴C(-1,4),B(-1,0),
∵直線y=-x+3與x軸交于點A,
∴A(3,0),
∵BA=BC,
∴∠PCD=45°,
∴設PD=DC=x,
則PC=
2
x,AD=4
2
-x,
∵S△PAD=
1
4
S△ABC,
1
2
(4
2
-x)•x=
1
4
×
1
2
×4×4,x2-4
2
x+4=0;
解得:x=2
2
±2;
當x=2
2
+2時,PC=
2
x=4+2
2

∴4-yP=4+2
2
,
∴yP=-2
2

∴P(-1,-2
2
),
當x=2
2
-2時,PC=4-2
2
,
∴yP=2
2
,
∴P(-1,2
2
),
∴P(-1,2
2
)或P(-1,-2
2
).
點評:本題主要考查了二次函數(shù)與一元二次方程的關系,一元二次方程根與系數(shù)的關系,二次函數(shù)解析式的確定,圖形面積的求法等知識點.考查學生數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側;
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經過點C,求平移后所得拋物線的表達式;
(3)設(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習冊答案