【題目】1)已知a+b=﹣,求代數(shù)式(a12+b2a+b+2a的值.

2)已知abc是三角形的三邊,且a2+b2+c2abbcac0.求證:此三角形是等邊三角形.

【答案】1;(2)見解析.

【解析】

1)先將原式化簡變形,再根據(jù)整體代入法進行計算即可;

2)先將a2+b2+c2abbcac進行變形,可得(ab2+(ac2+(bc20,進而得出此三角形是等邊三角形.

解:(1)原式=a22a+1+2ab+b2+2a=(a+b2+1,

a+b=﹣代入,原式=;

2)證明:∵a2+b2+c2abacbc0,

2a2+2b2+2c22ab2ac2bc0

∴(ab2+(ac2+(bc20,

∴此三角形是等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,AB=AC,其周長為20cm,則AB邊的取值范圍是( )
A.1cm<AB<4cm
B.5cm<AB<10cm
C.4cm<AB<8cm
D.4cm<AB<10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=70°,∠AOD=AOC,∠BOD=3BOC(∠BOC45°),則∠BOC的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中:
①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③甲隊比乙隊提前3天完成任務(wù);
④當x=2或6時,甲乙兩隊所挖管道長度都相差100米.
正確的有 . (在橫線上填寫正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小丁在研究數(shù)學(xué)問題時遇到一個定義:對于排好順序的三個數(shù): ,稱為數(shù)列.計算, , 將這三個數(shù)的最小值稱為數(shù)列的價值.例如,對于數(shù)列2,1,3,因為, , ,所以數(shù)列2,1,3的價值為

小丁進一步發(fā)現(xiàn):當改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應(yīng)的價值.如數(shù)列﹣1,23的價值為;數(shù)列3,1,2的價值為1;.經(jīng)過研究,小丁發(fā)現(xiàn),對于“2,1,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,價值的最小值為.根據(jù)以上材料,回答下列問題:

1)數(shù)列﹣4,﹣3,2的價值為

2)將“﹣4,﹣32”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,這些數(shù)列的價值的最小值為 ,取得價值最小值的數(shù)列為 (寫出一個即可);

3)將2,﹣9,aa1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的價值的最小值為1,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點O為直線AB上一點,將直角三角板MON的直角頂點放在點O處,并在∠MON內(nèi)部作射線OC

1)如圖1,三角板的一邊ON與射線OB重合,且∠AOC150°.若以點O為觀察中心,射線OM表示正北方向,求射線OC表示的方向;

2)如圖2,將三角板放置到如圖位置,使OC恰好平分∠MOB,且∠BON2NOC,求∠AOM的度數(shù);

3)若仍將三角板按照如圖2的方式放置,僅滿足OC平分∠MOB,試猜想∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機會均等.

(1)現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向2的概率為;
(2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
游戲規(guī)則:隨機轉(zhuǎn)動轉(zhuǎn)盤兩次,停止后,指針各指向一個數(shù)字,若兩數(shù)之積為偶數(shù),則小明勝;否則小華勝.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知∠1+2=180°,∠3=B 求證:∠AED=∠ACB

證明:∵∠1+∠4180°(平角定義)

∠1+∠2180°(已知)

∴_____________

∴∠3+ =180°

3=B(已知)

+ =180°(等量代換)

AED=∠ACB ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點A在射線CE上,∠C=∠D

1)如圖1,若AC∥BD,求證:AD∥BC

2)如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄?/span>∠DAE∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;

3)如圖3,在(2)的條件下,過點DDF∥BC交射線于點F,當∠DFE=8∠DAE時,求∠BAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案