在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AB=10,AC-BC=2,求CD的長.
【答案】分析:此題先設BC=x,利用勾股定理,可求出BC和AC,再利用三角形面積不變,用兩種方法表示,即可求出CD的長.
解答:解:設BC=a,AC=b,AB=c,則有b-a=2
由a2+b2=c2得(b-a)2+2ab=c2,即
4+2ab=102
∴ab=48
ab=×10•CD=24,
∴CD=4.8.
點評:本題利用了勾股定理以及直角三角形的面積公式(其面積=×兩直角邊的積=×斜邊×斜邊上的高).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習冊答案