【題目】如圖,矩形OABC中,A(1,0),C(0,2),雙曲線y= (0<k<2)的圖象分別交AB,CB于點(diǎn)E,F(xiàn),連接OE,OF,EF,S△OEF=2S△BEF , 則k值為( )
A.
B.1
C.
D.
【答案】A
【解析】解:∵四邊形OABC是矩形,BA⊥OA,A(1,0),
∴設(shè)E點(diǎn)坐標(biāo)為(1,m),則F點(diǎn)坐標(biāo)為( ,2),
則S△BEF= (1﹣ )(2﹣m),S△OFC=S△OAE= m,
∴S△OEF=S矩形ABCO﹣S△OCF﹣S△OEA﹣S△BEF=2﹣ m﹣ m﹣ (1﹣ )(2﹣m),
∵S△OEF=2S△BEF,
∴2﹣ m﹣ m﹣ (1﹣ )(2﹣m)=2 (1﹣ )(2﹣m),
整理得 (m﹣2)2+m﹣2=0,解得m1=2(舍去),m2= ,
∴E點(diǎn)坐標(biāo)為(1, );
∴k= ,
所以答案是:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用比例系數(shù)k的幾何意義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E分別是⊙O的內(nèi)接正三角形ABC的AB,AC邊上的中點(diǎn),若⊙O的半徑為2,則DE的長(zhǎng)等于( )
A.
B.
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格).
(1)畫(huà)出△ABC中BC邊上的高AH和BC邊上的中線AD.
(2)畫(huà)出將△ABC向右平移5格又向上平移3格后的△A′B′C′.
(3)△ABC的面積為 .
(4)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線 與x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線 , 則下列結(jié)論:① a﹣b+c>0;②b>0;③陰影部分的面積為4;④若c=﹣1,則 . 其中正確的是(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,過(guò)點(diǎn)A作AD⊥BC,垂足為D,E為AB上一點(diǎn),過(guò)點(diǎn)E作EF⊥BC,垂足為F,過(guò)點(diǎn)D作DG∥AB交AC于點(diǎn)G.
(1)依題意補(bǔ)全圖形;
(2)請(qǐng)你判斷∠BEF與∠ADG的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且BG=CG,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當(dāng)點(diǎn)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明理由
(3)若D為AB的中點(diǎn),則當(dāng)∠A的大小滿(mǎn)足什么條件時(shí),四邊形BECD是正方形?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材料)
小明同學(xué)遇到下列問(wèn)題:
解方程組,他發(fā)現(xiàn)如果直接用代入消元法或加減消元法求解,運(yùn)算量比較大,也容易出錯(cuò).如果把方程組中的(2x+3y)看作一個(gè)數(shù),把(2x﹣3y)看作一個(gè)數(shù),通過(guò)換元,可以解決問(wèn)題.以下是他的解題過(guò)程:
令m=2x+3y,n=2x﹣3y,
這時(shí)原方程組化為,解得,
把代入m=2x+3y,n=2x﹣3y.
得解得.
所以,原方程組的解為
(解決問(wèn)題)
請(qǐng)你參考小明同學(xué)的做法,解決下面的問(wèn)題:
(1)解方程組;
(2)已知方程組的解是,求方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商人將單價(jià)為8元的商品按每件10元出售,每天可銷(xiāo)售100件,已知這種商品每提高2元,其銷(xiāo)量就要減少10件,為了使每天所賺利潤(rùn)最多,該商人應(yīng)將銷(xiāo)售價(jià)(為偶數(shù))提高( )
A.8元或10元
B.12元
C.8元
D.10元
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com