【題目】圖①②分別是某種型號(hào)跑步機(jī)的實(shí)物圖與示意圖.已知踏板CD長(zhǎng)為1.6m,CD與地面DE的夾角∠CDE12°,支架AC長(zhǎng)為0.8m,ACD80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m).

(參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

【答案】11m

【解析】試題分析:過C點(diǎn)作FG⊥ABF,交DEG.在Rt△ACF中,根據(jù)CF=ACsin∠CAF求出CF的長(zhǎng),在Rt△CDG中,根據(jù)CG=CDsin∠CDE求出CG的長(zhǎng),然后根據(jù)FG=FC+CG計(jì)算即可.

試題解析:解:過C點(diǎn)作FG⊥ABF,交DEG

∵CD與地面DE的夾角∠CDE12°,∠ACD80°,

∴∠ACF=90°+12°﹣80°=22°

∴∠CAF=68°,

Rt△ACF中,CF=ACsin∠CAF≈0744m,

Rt△CDG中,CG=CDsin∠CDE≈0336m,

∴FG=FC+CG≈11m

故跑步機(jī)手柄的一端A的高度約為11m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列這組數(shù)據(jù):15、13、14、13、16、13的眾數(shù)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個(gè)數(shù)為( ) ①柱體的上、下兩個(gè)面一樣大;②圓柱的側(cè)面展開圖是長(zhǎng)方形;③正方體有6個(gè)頂點(diǎn);④圓錐有2個(gè)面,且都是曲面;⑤球僅由1個(gè)面圍成,這個(gè)面是平面;⑥三棱柱有5個(gè)面,且都是平面.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小彬和小明每天早晨堅(jiān)持跑步,小彬每秒跑4米,小明每秒跑6米.

(1)如果他們站在百米跑道的兩端同時(shí)相向起跑,那么幾秒后兩人相遇?

(2)如果小明站在百米跑道的起點(diǎn)處,小彬站在他前面10米處,兩人同時(shí)同向起跑,幾秒后小明能追上小彬?

(2)如果他們都站在四百米環(huán)形跑道的起點(diǎn)處,兩人同時(shí)同向起跑,幾分鐘后他們?cè)俅蜗嘤觯?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新學(xué)期,兩摞規(guī)格相同的數(shù)學(xué)課本整齊的疊放在講臺(tái)上請(qǐng)根據(jù)圖中所給出的數(shù)據(jù)信息,解答下列問題

1)每本書的高度為 cm,課桌的高度為 cm;

2)當(dāng)課本數(shù)為x(本)時(shí)請(qǐng)寫出同樣疊放在桌面上的一摞數(shù)學(xué)課本高出地面的距離 (用含x的代數(shù)式表示);

3)桌面上有55本與題1中相同的數(shù)學(xué)課本,整齊疊放成一摞若有18名同學(xué)各從中取走1,求余下的數(shù)學(xué)課本高出地面的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)O是直線AB上的一點(diǎn) ,OD、OE分別是、 的角平分線

1的度數(shù);

2寫出圖中與互余的角;

3圖中有的補(bǔ)角嗎若有,請(qǐng)把它找出來并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是(

A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);

(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問題:

(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫出證明過程,若不成立,請(qǐng)說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案