【題目】如圖1,直線AMAN,AB平分∠MAN,過(guò)點(diǎn)BBCBAAN于點(diǎn)C;動(dòng)點(diǎn)E、D同時(shí)從A點(diǎn)出發(fā),其中動(dòng)點(diǎn)E2cm/s的速度沿射線AN方向運(yùn)動(dòng),動(dòng)點(diǎn)D1cm/s的速度運(yùn)動(dòng);已知AC6cm,設(shè)動(dòng)點(diǎn)DE的運(yùn)動(dòng)時(shí)間為t

1)當(dāng)點(diǎn)D在射線AM上運(yùn)動(dòng)時(shí)滿足SADBSBEC21,試求點(diǎn)DE的運(yùn)動(dòng)時(shí)間t的值;

2)當(dāng)動(dòng)點(diǎn)D在直線AM上運(yùn)動(dòng),E在射線AN運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)時(shí)間t,使得△ADB與△BEC全等?若存在,請(qǐng)求出時(shí)間t的值;若不存在,請(qǐng)說(shuō)出理由.

【答案】(1)當(dāng)ts4s時(shí),滿足SADBSBEC21;(2t的值為2s6s

【解析】

1)作BHACH,BGAMG.由BA平分∠MAN,推出BG=BH,由SADBSBEC=21,AD=t,AE=2t,可得tBG6-2tBH=21,解方程即可解決問(wèn)題;
2)存在.由BA=BC,∠BAD=BCE=45°,可知當(dāng)AD=EC時(shí),ADB≌△CEB,列出方程即可解決問(wèn)題.

解:(1)如圖2中,

①當(dāng)E在線段AC上時(shí),作BHACHBGAMG

BA平分∠MAN,

BGBH,

SADBSBEC21ADt,AE2t

tBG 62tBH21,

ts

②當(dāng)點(diǎn)E運(yùn)動(dòng)到AC延長(zhǎng)線上,同法可得t4時(shí),也滿足條件,

∴當(dāng)ts4s時(shí),滿足SADBSBEC21

2)存在.當(dāng)DAM延長(zhǎng)線上時(shí)

BABC,∠BAD=∠BCE45°,

∴當(dāng)ADEC時(shí),ADB≌△CEB,

t62t,

t2s,

t2s時(shí),ADB≌△CEB

當(dāng)DMA延長(zhǎng)線上時(shí),2t6t,t6s,

綜上所述,滿足條件的t的值為2s6s

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AD是△ABC的高,AD的垂直平分線分別交AB,AC于點(diǎn)E,F

1)求證:∠BAED;

2)若添加條件:DEDF.求證:∠B=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,形如的點(diǎn)涂上紅色(其中、為整數(shù)),稱為紅點(diǎn),其余不涂色,那么拋物線上有( )個(gè)紅點(diǎn).

A. 個(gè) B. 個(gè) C. 個(gè) D. 無(wú)數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+m與雙曲線y=相交于A,B兩點(diǎn),BCx軸,ACy軸,則△ABC面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中, AB AC , BAC=100°,點(diǎn) D BC 上, ABD AFD 關(guān)于直線 AD 對(duì)稱, FAC 的平分線交 BC 于點(diǎn) G,連接 FG 當(dāng)BAD _________.時(shí),DFG為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE,BE,DE,過(guò)點(diǎn)AAE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;EBED;SAPD+SAPB=1+.其中正確結(jié)論的序號(hào)是( 。

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,線段長(zhǎng)為,,,,為線段上兩動(dòng)點(diǎn),右側(cè)且,則由的路徑:的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別為(-43)、(-1,1).

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)請(qǐng)作出關(guān)于y對(duì)稱的△A′B′C′

3)寫(xiě)出點(diǎn)的坐標(biāo) ;的面積為

4)若在y軸上有點(diǎn)M,則能使ABM的周長(zhǎng)最小的點(diǎn)M的坐標(biāo)為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案