【題目】點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),已知AB=1,∠ADC=120°, 點(diǎn)M,N分別是AB,BC邊上的中點(diǎn),則MPN的周長(zhǎng)最小值是______.

【答案】.

【解析】

先作點(diǎn)M關(guān)于AC的對(duì)稱點(diǎn)M′,連接M′NACP,此時(shí)MP+NP有最小值.然后證明四邊形ABNM′為平行四邊形,即可求出MP+NP=M′N=AB=1,再求出MN的長(zhǎng)即可求出答案.

如圖,作點(diǎn)M關(guān)于AC的對(duì)稱點(diǎn)M′,連接M′NACP,此時(shí)MP+NP有最小值,最小值為M′N的長(zhǎng).

∵菱形ABCD關(guān)于AC對(duì)稱,MAB邊上的中點(diǎn),

M′AD的中點(diǎn),

又∵NBC邊上的中點(diǎn),

AM′BN,AM′=BN,

∴四邊形ABNM′是平行四邊形,

M′N=AB=1,

MP+NP=M′N=1,即MP+NP的最小值為1

連結(jié)MN,過(guò)點(diǎn)BBEMN,垂足為點(diǎn)E,

ME=MN,

RtMBE中,,BM=

ME=,

MN=

MPN的周長(zhǎng)最小值是+1.

故答案為:+1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)甲、乙兩種商品,已知每件甲種商品的價(jià)格比每件乙種商品的價(jià)格貴10元,用350元購(gòu)買甲種商品的件數(shù)恰好與用300元購(gòu)買乙種商品的件數(shù)相同.

(1)求甲、乙兩種商品每件的價(jià)格各是多少元?

(2)計(jì)劃購(gòu)買這兩種商品共50件,且投入的經(jīng)費(fèi)不超過(guò)3200元,那么,最多可購(gòu)買多少件甲種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組對(duì)函數(shù)y=x+的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.

x

﹣3

﹣2

﹣1

-

-

1

2

3

y

-

m

﹣2

-

-

2

(1)自變量x的取值范圍是   ,m=   

(2)根據(jù)(1)中表內(nèi)的數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出函數(shù)圖象的一部分,請(qǐng)你畫出該函數(shù)圖象的另一部分.

(3)請(qǐng)你根據(jù)函數(shù)圖象,寫出兩條該函數(shù)的性質(zhì);

(4)進(jìn)一步探究該函數(shù)的圖象發(fā)現(xiàn):

①方程x+=3有   個(gè)實(shí)數(shù)根;

②若關(guān)于x的方程x+=t有2個(gè)實(shí)數(shù)根,則t的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料并解決有關(guān)問(wèn)題:我們知道|x|,現(xiàn)在我們可以用這個(gè)結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x2|時(shí),可令x+10x20,分別求得x=﹣1x2(稱﹣1,2分別叫做|x+1||x2|的零點(diǎn)值.)在有理數(shù)范圍內(nèi),零點(diǎn)值x=﹣1x2可將全體有理數(shù)分成不重復(fù)且不遺漏的如下3種情況:

1)當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x2)=﹣2x+1;

2)當(dāng)﹣1≤x≤2時(shí),原式=x+1﹣(x2)=3

3)當(dāng)x2時(shí),原式=x+1+x22x1

綜上所述,原式=

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:

1)分別求出|x+2||x4|的零點(diǎn)值;

2)化簡(jiǎn)代數(shù)式|x+2|+|x4|;

3)求方程:|x+2|+|x4|6的整數(shù)解;

4|x+2|+|x4|是否有最小值?如果有,請(qǐng)直接寫出最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若線段AB=10cm,C是線段AB上的任意一點(diǎn),M、N分別是ACCB的中點(diǎn),則MN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家商場(chǎng)平時(shí)以同樣價(jià)格出售相同的商品,春節(jié)期間兩家商場(chǎng)都讓利酬賓,其中甲商場(chǎng)所有商品按8折出售,乙商場(chǎng)對(duì)一次購(gòu)物中超過(guò)200元后的價(jià)格部分打7折.

(1)以x(單位:元)表示商品原價(jià),y(單位:元)表示購(gòu)物金額,分別就兩家商場(chǎng)的讓利方式寫出y關(guān)于x的函數(shù)解析式;

(2)在同一直角坐標(biāo)系中畫出(1)中函數(shù)的圖象;

(3)春節(jié)期間如何選擇這兩家商場(chǎng)去購(gòu)物更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為方便市民出行,減輕城市中心交通壓力,貴陽(yáng)市地鐵1號(hào)線于2018121號(hào)正式全線開(kāi)通.地鐵開(kāi)通后,李明爸爸媽媽的出行方式將由乘公交車改為乘坐地鐵,爸爸從國(guó)際生態(tài)會(huì)議中心站出發(fā)至噴水池站,每天所需的時(shí)間將比以往節(jié)省70%;媽媽從國(guó)際生態(tài)會(huì)議中心站出發(fā)至珠江路站,每天所需的時(shí)間將比以往節(jié)省55%,這樣兩人所需的時(shí)間共節(jié)省60%,現(xiàn)在兩人乘地鐵所需的時(shí)間之和為1.2小時(shí).請(qǐng)問(wèn)李明爸爸媽媽原來(lái)乘公交車上班時(shí)每天所需時(shí)間各為多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于AB兩點(diǎn),以AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC,點(diǎn)C為直角頂點(diǎn),連接OC.

(1)直接寫出= ;

(2)請(qǐng)你過(guò)點(diǎn)CCEy軸于E點(diǎn),試探究OB+OACE的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)若點(diǎn)MAB的中點(diǎn),點(diǎn)NOC的中點(diǎn),求MN的值;

(4)如圖2,將線段AB繞點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)至BD,且ODAD,延長(zhǎng)DO交直線于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(結(jié)果用含x,y的代數(shù)式表示

(2)當(dāng)互為相反數(shù)時(shí),求(1)中代數(shù)式的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案