【題目】如圖, ,且,直線經(jīng)過點.設(shè),于點,將射線繞點按逆時針方向旋轉(zhuǎn),與直線交于點.
(1)當(dāng)時, ;
(2)求證: ;
(3)若的外心在其內(nèi)部,直接寫出的取值范圍.
【答案】(1);(2)見解析;(3)
【解析】
(1)利用四邊形內(nèi)角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)證明△ABC≌△EDC(AAS)即可求解;
(3)當(dāng)∠ABC=α=90°時,△ABC的外心在其直角邊上,∠ABC=α>90°時,△ABC的外心在其外部,即可求解.
解:(1)在四邊形BADC中,∠B+∠ADC=360°-∠BAD-∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案為125;
(2)如圖,
∵,又繞點逆時針旋轉(zhuǎn)得到射線,
∴,又,
即,
在四邊形中,
∵
∴
又∵
∴
在和中,
,
∴
∴
(3)當(dāng)∠ABC=α=90°時,△ABC的外心在其直角邊上,
∠ABC=α>90°時,△ABC的外心在其外部,
而45°<α<135°,
故:45°<α<90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF與⊙O相切于點B,交AC的延長線于點F.
(1)求證:D是AC的中點;
(2)若AB=12,sin∠CAE=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家為支持大學(xué)生創(chuàng)業(yè),提供小額無息貸款,學(xué)生王芳享受政策無息貸款36000元用來代理品牌服裝的銷售.已知該品牌服裝進(jìn)價每件40元,日銷售y(件)與銷售價x(元/件)之間的關(guān)系如圖所示(實線),每天付員工的工資每人每天82元,每天應(yīng)支付其它費用106元.
(1)求日銷售y(件)與銷售價x (元/件)之間的函數(shù)關(guān)系式;
(2)若暫不考慮還貸,當(dāng)某天的銷售價為48元/件時,收支恰好平衡(收入=支出),求該店員工人數(shù);
(3)若該店只有2名員工,則該店至少需要多少天才能還清貸款,此時,每件服裝的價格應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,弦于點,過點作的切線交的延長線于點.
(1)已知,求的大。ㄓ煤的式子表示);
(2)取的中點,連接,請補全圖形;若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊承接了60萬平方米的綠化工程,由于情況有變,……設(shè)原計劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是( )
A. 實際工作時每天的工作效率比原計劃提高了結(jié)果提前30天完成了這一任務(wù)
B. 實際工作時每天的工作效率比原計劃提高了,結(jié)果延誤30天完成了這一任務(wù)
C. 實際工作時每天的工作效率比原計劃降低了,結(jié)果延誤30天完成了這一任務(wù)
D. 實際工作時每天的工作效率比原計劃降低了,結(jié)果提前30天完成了這一任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形和正六邊形 邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點逆時針旋轉(zhuǎn),使邊與邊重合,完成第一次旋轉(zhuǎn)再繞點逆時針旋轉(zhuǎn),使邊與邊重合,完成第二次旋轉(zhuǎn);此時點經(jīng)過路徑的長為_________:若按此方式旋轉(zhuǎn),共完成六次,在這個過程中,點之間距離的最大值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過兩個確定點A、B,其中A為頂點,B為拋物線與y軸的交點.
(1)由拋物線的性質(zhì)可知,該拋物線還經(jīng)過一個確定點C,請寫出找點C的方法(不要求畫圖);
(2)若A(1,4)、B(0,3),求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河流的兩岸PQ、MN互相平行,河岸PQ上有一排小樹,已知相鄰兩樹之間的距離CD=50米,某人在河岸MN的A處測得∠DAN=35°,然后沿河岸走了120米到達(dá)B處,測得∠CBN=70°.求河流的寬度CE(結(jié)果保留兩個有效數(shù)字).(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖1所示,成本y2與銷售月份x之間的關(guān)系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.
(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com