【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣4,0).
(1)求二次函數(shù)的解析式;
(2)在拋物線上存在點(diǎn)P,滿足S△AOP=8,請直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)y=--4x P1(-2, 4),P2(-2+2,-4),P3(-2-2,-4)
【解析】試題分析:(1)把點(diǎn)A原點(diǎn)的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)根據(jù)三角形的面積公式求出點(diǎn)P到AO的距離,然后分點(diǎn)P在x軸的上方與下方兩種情況解答即可.
試題解析:(1)由已知條件得,
解得,
所以,此二次函數(shù)的解析式為y=﹣x2﹣4x;
(2)∵點(diǎn)A的坐標(biāo)為(﹣4,0),
∴AO=4,
設(shè)點(diǎn)P到x軸的距離為h,
則S△AOP=×4h=8,
解得h=4,
①當(dāng)點(diǎn)P在x軸上方時(shí),﹣x2﹣4x=4,
解得x=﹣2,
所以,點(diǎn)P的坐標(biāo)為(﹣2,4),
②當(dāng)點(diǎn)P在x軸下方時(shí),﹣x2﹣4x=﹣4,
解得x1=﹣2+2,x2=﹣2﹣2,
所以,點(diǎn)P的坐標(biāo)為(﹣2+2,﹣4)或(﹣2﹣2,﹣4),
綜上所述,點(diǎn)P的坐標(biāo)是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD,AD∥BC.點(diǎn)P在直線CD上運(yùn)動(dòng)(點(diǎn)P和點(diǎn)C,D不重合,點(diǎn)P,A,B不在同一條直線上),若記∠DAP,∠APB,∠PBC分別為∠α,∠β,∠γ.
(1)如圖1,當(dāng)點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí),寫出∠α,∠β,∠γ之間的關(guān)系并說出理由;
(2)如圖2,如果點(diǎn)P在線段CD的延長線上運(yùn)動(dòng),探究∠α,∠β,∠γ之間的關(guān)系,并說明理由.
(3)如圖3,BI平分∠PBC,AI交BI于點(diǎn)I,交BP于點(diǎn)K,且∠PAI:∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列語句描述正確的是( 。
①若∠1=∠3,則AB∥DC;②若∠C+∠1+∠4=180°,則AD∥BC;③∠A=∠C,∠ABC=∠ADC,則AB∥DC;④若∠2=∠4,BD平分∠ABC,則BC=CD;⑤若AD∥BC,∠A=∠C,則AB∥DC.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A是雙曲線與直線在第二象限的交點(diǎn),AB垂直軸于點(diǎn)B,且S△ABO=.
(1)求兩個(gè)函數(shù)的表達(dá)式;
(2)求直線與雙曲線的交點(diǎn)坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,4).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方的動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N求線段MN的最大值;(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對稱軸l上是否存在點(diǎn)P使△PBN是等腰三角形?若存在,請直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)判斷OE與OF的大小關(guān)系?并說明理由?
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)何處時(shí),四邊形AECF是矩形?并說出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩幢大樓的部分截面及相關(guān)數(shù)據(jù)如圖,小明在甲樓A處透過窗戶E發(fā)現(xiàn)乙樓F處出現(xiàn)火災(zāi),此時(shí)A,E,F在同一直線上.跑到一樓時(shí),消防員正在進(jìn)行噴水滅火,水流路線呈拋物線,在1.2m高的D處噴出,水流正好經(jīng)過E,F. 若點(diǎn)B和點(diǎn)E、點(diǎn)C和F的離地高度分別相同,現(xiàn)消防員將水流拋物線向上平移0.4m,再向左后退了____m,恰好把水噴到F處進(jìn)行滅火.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)利用燈光下的影子來測量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時(shí),乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時(shí),甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時(shí)的身高為1.75m,求路燈的高AB的長.(結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 的邊長為1,其面積為 S1,以CD 為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為 S2,…,按此規(guī)律繼續(xù)下去,則 S9的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com