【題目】2015年1月,市教育局在全市中小學中選取了63所學校從學生的思想品德、學業(yè)水平、學業(yè)負擔、身心發(fā)展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學七年級全體學生中隨機抽取了若干名學生進行問卷調(diào)查,了解他們每天在課外用于學習的時間,并繪制成如下不完整的統(tǒng)計圖. 根據(jù)上述信息,解答下列問題:

(1)本次抽取的學生人數(shù)是 ______ ;扇形統(tǒng)計圖中的圓心角α等于 ______ ;補全統(tǒng)計直方圖;

(2)被抽取的學生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.

【答案】130,144°;(2

【解析】試題分析:(1)根據(jù)題意列式求值,根據(jù)相應數(shù)據(jù)畫圖即可;

2)根據(jù)題意列表,然后根據(jù)表中數(shù)據(jù)求出概率即可.

解:(16÷20%=30,(30﹣3﹣7﹣6﹣2÷30×360=12÷30×26=144°,

答:本次抽取的學生人數(shù)是30人;扇形統(tǒng)計圖中的圓心角α等于144°;

故答案為:30144°;

補全統(tǒng)計圖如圖所示:

2)根據(jù)題意列表如下:

設豎列為小紅抽取的跑道,橫排為小花抽取的跑道,

記小紅和小花抽在相鄰兩道這個事件為A,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,且點A(0,2),點C(-1,0),如圖所示:拋物線y=2ax2+ax-32經(jīng)過點B.

(1)寫出點B的坐標;

(2)求拋物線的解析式;

(3)若三角板ABC從點C開始以每秒1個單位長度的速度向x軸正方向平移,求點A落在拋物線上時所用的時間,并求三角板在平移過程掃過的面積;

(4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x2是關于x的一元二次方程x2ax0的一個根,則a的值為( 。

A.1B.1C.2D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將三角形各頂點的縱坐標都減去5,橫坐標保持不變,所得圖形與原圖形相比( )

A. 向上平移了5個單位B. 向下平移了5個單位

C. 向左平移了5個單位D. 向右平移了5個單位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD= AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:
①∠AED=∠CED;
②OE=OD;
③BH=HF;
④BC﹣CF=2HE;
⑤AB=HF.
其中正確的有( )

A.①②③④⑤
B.①②③④
C.①③④⑤
D.①②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后端點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點,過點C的直線交AB的延長線于點D,AEDC,垂足為E,F(xiàn)是AE與O的交點,AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點O,AC=6,BD=8.動點E從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止.點F是點E關于BD的對稱點,EF交BD于點P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD,EAD上一點,AB=8,BE=BC=10,動點P在線段BE上(與點B、E不重合),點QBC的延長線上,PE=CQ,PQEC于點F,PGBQEC于點G,設PE=x.

(1)求證:△PFG≌△QFC

(2)連結DG.當x為何值時,四邊形PGDE是菱形,請說明理由;

(3)作PHEC于點H.探究:

①點P在運動過程中,線段HF的長度是否發(fā)生變化?若變化,說明理由;若不變,求HF的長度;

②當x為何值時,△PHF與△BAE相似

查看答案和解析>>

同步練習冊答案