精英家教網 > 初中數學 > 題目詳情

【題目】《張邱建算經》是中國古代數學史上的杰作,該書中有首古民謠記載了一數列問題:“南山一棵竹,竹尾風割斷,剩下三十節(jié),一節(jié)一個圈.頭節(jié)高五寸 , 頭圈一尺三 . 逐節(jié)多三分 , 逐圈少分三 . 一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是多遠?”(注釋:①第一節(jié)的高度為0.5尺;②第一圈的周長為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長比其下面的一圈少0.013尺) 問:此民謠提出的問題的答案是(
A.72.705尺
B.61.395尺
C.61.905尺
D.73.995尺

【答案】B
【解析】解:∵每竹節(jié)間的長相差0.03尺, 設從地面往長,每節(jié)竹長為a1 , a2 , a3 , …,a30 ,
∴{an}是以a1=0.5為首項,以d′=0.03為公差的等差數列,
由題意知竹節(jié)圈長,后一圏比前一圏細1分3厘,即0.013尺,
設從地面往上,每節(jié)節(jié)圈長為b1 , b2 , b3 , …,b30 ,
由{bn}是以b1=1.3為首項,d=﹣0.013為公差的等差數列,
∴一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是:
S30=(30×0.5+ ×0.03)+[30×1.3+ ×(﹣0013)]=61.395.
故選:B.
設從地面往長,每節(jié)竹長為a1 , a2 , a3 , …,a30 , 則{an}是以a1=0.5為首項,以d′=0.03為公差的等差數列,設從地面往上,每節(jié)節(jié)圈長為b1 , b2 , b3 , …,b30 , 則{bn}是以b1=1.3為首項,d=﹣0.013為公差的等差數列,由此能求出一蟻往上爬,遇圈則繞圈.爬到竹子頂的行程.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點B順時針旋轉到△A1BO1的位置,使點A的對應點A1落在直線y= x上,再將△A1BO1繞點A1順時針旋轉到△A1B1O2的位置,使點O1的對應點O2落在直線y= x上,依次進行下去…,若點A的坐標是(0,1),點B的坐標是( ,1),則點A8的橫坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】通過隨機詢問某地100名高中學生在選擇座位時是否挑同桌,得到如下2×2列聯表:

男生

女生

合計

挑同桌

30

40

70

不挑同桌

20

10

30

總計

50

50

100

(Ⅰ)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現從這5人中隨機選取3人做深度采訪,求這3名學生中至少有2名要挑同桌的概率;
(Ⅱ)根據以上2×2列聯表,是否有95%以上的把握認為“性別與在選擇座位時是否挑同桌”有關?
下面的臨界值表供參考:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知F1、F2分別為雙曲線C: =1的左、右焦點,P為雙曲線C右支上一點,且|PF1|=2|PF2|,則△PF1F2外接圓的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的左焦點F1(﹣ ,0),若橢圓上存在一點D,滿足以橢圓短軸為直徑的圓與線段DF1相切于線段DF1的中點F
(1)求橢圓E的方程;
(2)過坐標原點O的直線交橢圓W: =1于P、A兩點,其中點P在第一象限,過P作x軸的垂線,垂足為C,連結AC并延長交橢圓W于B,求證:PA⊥PB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 =0. (Ⅰ)求角B的大;
(Ⅱ)若b= ,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我國古代數學著作《九章算術》有如下問題:“今有器中米,不知其數,前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數 ,若將f(x)的圖象向左平移 個單位后所得函數的圖象關于原點對稱,則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯合購買一批足球運動裝備,市場調查發(fā)現:甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務的負責人,你認為到哪家商場購買比較合算?

查看答案和解析>>

同步練習冊答案