【題目】有一組鄰邊相等的凸四邊形叫做和睦四邊形,寓意是全世界和平共處,睦鄰友好,共同發(fā)展.如菱形,正方形等都是和睦四邊形”.

1)如圖1BD平分∠ABC,ADBC,求證:四邊形ABCD和睦四邊形;

2)如圖2,直線x軸、y軸分別交于AB兩點,點PQ分別是線段OA、AB上的動點.P從點A出發(fā),以每秒4個單位長度的速度向點O運動.Q從點A出發(fā),以每秒5個單位長度的速度向點B運動.PQ兩點同時出發(fā),設運動時間為t.當四邊形BOPQ和睦四邊形時,求t的值;

3)如圖3,拋物線軸交于A、B兩點(點A在點B的左側),與y軸交于點,拋物線的頂點為點D.當四邊形COBD和睦四邊形,且CD=OC.拋物線還滿足:①;②頂點D在以AB為直徑的圓上. 是拋物線上任意一點,且.恒成立,求m的最小值.

【答案】1)見解析;(2;(3

【解析】

1)由BD平分∠ABC推出∠ABD=CBD,又ABBC,所以∠ADB=CBD,所以∠ABD=ADB,即AB=AD,所以四邊形ABCD為“和睦四邊形”; (2)分別求出 AQ、APBQ、OP、OB的值,連接PQ ,因為,所以,所以,根據(jù)勾股定理求出PQ,再分類討論t的值即可;(3)表示出點的坐標,由可得, 因為得出 所以,即,由①②的方程,且解出a、b的值,求出拋物線的解析式為,因為P在拋物線上,將P代入拋物線得,,可得,又因為,所以,即,得出m的最小值為;

解:

1

,

,

,

四邊形ABCD為“和睦四邊形”;

2)由題意得:AQ=5 t ,AP=4 t BQ=10 - 5 t ,OP=8 - 4 t ,OB=6,連接PQ ,

,

綜上:

3)由題意得:

由①②,且,得,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正六邊形ABCDEF中,對角線AEBF相交于點M,BDCE相交于點N.

(1)求證:AE=FB;

(2)在不添加任何輔助線的情況下,請直接寫出所有與△ABM全等的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年720日豬肉價格比今年年初上漲了60%,某市民今年720日在某超市購買1千克豬肉花了80元錢.

1)問:今年年初豬肉的價格為每千克多少元?

2)某超市將進貨價為每千克65元的豬肉,按720日價格出售,平均一天能銷售出100千克,經(jīng)調查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A的坐標為(40),點B的坐標為(03),在第一象限內找一點P(a,b) ,使PAB為等邊三角形,則2(a-b)=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,反比例函數(shù)與二次函數(shù)的圖象交于點和點

1)當時,求反比例函數(shù)的解析式;

2)已知經(jīng)過原點O的兩條直線ABCD分別與雙曲線交于ABC,D,那么ABCD互相平分,所以四邊形ACBD是平行四邊形問:平行四邊形ACBD能否成為矩形?能否成為正方形?若能,請說明線段AB,CD的位置關系;若不能,請說明理由;

3)設二次函數(shù)的圖象的頂點為Q,當△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,并且關于的一元二次方:有兩個不相等的實數(shù)根,下列結論:①;②;③;④,其中正確的有__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy(如圖)中,拋物線yax2+bx+2經(jīng)過點A4,0)、B2,2),與y軸的交點為C

1)試求這個拋物線的表達式;

2)如果這個拋物線的頂點為M,求AMC的面積;

3)如果這個拋物線的對稱軸與直線BC交于點D,點E在線段AB上,且∠DOE45°,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線lO于點A,BO上一點,過點BBCl,垂足為點C,連接AB、OB

1)求證:∠ABC=∠ABO

2)若AB,AC1,求O的半徑.

查看答案和解析>>

同步練習冊答案