【題目】一副三角板按圖 1 所示的位置擺放,將△DEF 繞點(diǎn) A(F)逆時(shí)針旋轉(zhuǎn) 60°后(圖 2), 測(cè)得 CG=8cm,則兩個(gè)三角形重疊(陰影)部分的面積為()
A. 16+16 cm2
B. 16+ cm2
C. 16+ cm2
D. 48cm2
【答案】B
【解析】
過G點(diǎn)作GH⊥AC于H,則∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH中根據(jù)等腰直角三角形三邊的關(guān)系得到GH與CH的值,然后在Rt△AGH中根據(jù)含30°的直角三角形三邊的關(guān)系求得AH,最后利用三角形的面積公式進(jìn)行計(jì)算即可.
解:過G點(diǎn)作GH⊥AC于H,如圖,
∠GAC=60°,∠GCA=45°,GC=8cm,
在Rt△GCH中,GH=CH=GC=4cm,
在Rt△AGH中,AH=GH=cm,
∴AC=AH+CH=+4(cm).
∴兩個(gè)三角形重疊(陰影)部分的面積=ACGH=×(+4)×4=16+cm2
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),邊OA的長(zhǎng)度為8,對(duì)角線AC=10,拋物線y=x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式并求出S最大時(shí)的m值;
②在S最大的情況下,在拋物線y=x2+bx+c的對(duì)稱軸上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式進(jìn)行,兩項(xiàng)成績(jī)的原始分均為100分.前6名選手的得分如下:
根據(jù)規(guī)定,筆試成績(jī)和面試成績(jī)分別按一定的百分比折和成綜合成績(jī)(綜合成績(jī)的滿分仍為100分)
(1)這6名選手筆試成績(jī)的中位數(shù)是 分,眾數(shù)是 分.
(2)現(xiàn)得知1號(hào)選手的綜合成績(jī)?yōu)?/span>88分,求筆試成績(jī)和面試成績(jī)各占的百分比.
(3)求出其余五名選手的綜合成績(jī),并以綜合成績(jī)排序確定前兩名人選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點(diǎn)O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)分別在邊,,上,且,.下列四個(gè)判斷中,不正確的是( 。
A. 四邊形是平行四邊形
B. 如果,那么四邊形是矩形
C. 如果平分平分∠BAC,那么四邊形 AEDF 是菱形
D. 如果AD⊥BC 且 AB=AC,那么四邊形 AEDF 是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有理數(shù)a、b、c滿足a>b>c(ac<0),且|c|<|b|<|a|,則|x﹣|+|x﹣|+|x+|的最小值是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[知識(shí)背景]:
數(shù)軸上,點(diǎn)A,B表示的數(shù)為a,b,則A,B兩點(diǎn)的距離AB=|a﹣b|,A、B的中點(diǎn)P表示的數(shù)為.
[知識(shí)運(yùn)用]:
已知式子(a+4)x3+2x2﹣x+3是關(guān)于x的二次三項(xiàng)式,且二次項(xiàng)系數(shù)為b,且a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)分別為A,B(如圖1),解答下列問題:
(1)a= ,b= ,AB= ;
(2)若點(diǎn)A以每秒2個(gè)單位的長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),t秒后到達(dá)原點(diǎn)O,求t的值;
(3)若點(diǎn)A,B都以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng)到達(dá)點(diǎn)M和點(diǎn)N,而O點(diǎn)不動(dòng),經(jīng)過t秒后,M,O,N三點(diǎn)中,其中一點(diǎn)是另外兩點(diǎn)的中點(diǎn),求此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=45°,D是AC邊上一點(diǎn),⊙O經(jīng)過D、A、B三點(diǎn),OD∥BC.
(1)求證:BC與⊙O相切;
(2)若OD=15,AE=7,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com