如圖1,已知拋物線y=-x2+bx+c經(jīng)過點A(1,0),B(-3,0)兩點,且與y軸交于點C.

(1) 求b,c的值。
(2)在第二象限的拋物線上,是否存在一點P,使得△PBC的面積最大?求出點P的坐標及△PBC的面積最大值.若不存在,請說明理由.
(3) 如圖2,點E為線段BC上一個動點(不與B,C重合),經(jīng)過B、E、O三點的圓與過點B且垂直于BC的直線交于點F,當△OEF面積取得最小值時,求點E坐標.
(1) ;(2)點P坐標為(),最大=;(3) (,)  .

試題分析:(1)將A、B兩點坐標代入即可求出
(2)假設(shè)存在一點P(x,),則△PBC的面積可表示為.從而可求出△PBC的面積最大值及點P的坐標;
(3)根據(jù)題意易證,所以,當OE最小時,△OEF面積取得最小值,點E在線段BC上, 所以當OE⊥BC時,OE最小此時點E是BC中點,因此 E()  .
試題解析:(1)  b=-2,c=" 3"
(2)存在。理由如下:
設(shè)P點

時,   ∴最大= 
時,
∴點P坐標為(,)
(3)∵,而, ,
, ∴ 
 
∴當最小時,面積取得最小值.
∵點在線段上,  ∴當時,最小.
此時點E是BC中點
 (,).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

自由下落物體的高度(米)與下落的時間(秒)的關(guān)系為.現(xiàn)有一鐵球從離地面米高的建筑物的頂部作自由下落,到達地面需要的時間是      秒.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)圖象的形狀與y=3x2相同,且它的頂點坐標是,該解析式為             ;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線的對稱軸是       .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

中秋節(jié)期間某水庫養(yǎng)殖場為適應市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進行捕撈、銷售.
九(1)班數(shù)學建模興趣小組根據(jù)調(diào)查,整理出第x天()的捕撈與銷售的相關(guān)信息如下:
鮮魚銷售單價(元/kg)
20
單位捕撈成本(元/kg)

捕撈量(kg)
950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當天全部售出,求第x天的收入y(元)與x(元)之間的函數(shù)關(guān)系式;(當天收入=日銷售額日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)y=ax2+bx+c的x與y的部分對應值如下表:則下列說法錯誤的是(     )
 
A.二次函數(shù)圖像與x軸交點有兩個
B.x≥2時y隨x的增大而增大
C.二次函數(shù)圖像與x軸交點橫坐標一個在-1~0之間,另一個在2~3之間
D.對稱軸為直線x=1.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=x2+2x-3的圖象的頂點坐標是(   )
A.(-1,-4)B.(1,-4)C.(-1,-2)D.(1,-2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若直線在第二、四象限都無圖像,則拋物線(   )
A.開口向上,對稱軸是y軸B.開口向下,對稱軸平行于y軸
C.開口向上,對稱軸平行于y軸D.開口向下,對稱軸是y軸

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù),當y<0時,自變量x的取值范圍是( 。
A.1<x<3B.x<1C.x>3D.x<1或x>3

查看答案和解析>>

同步練習冊答案