【題目】有一個安裝有進出水管的30升容器,水管單位時間內進出的水量是一定的,設從

某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量y(升)

與時間x(分)之間的函數(shù)關系如圖所示.根據圖象信息給出下列說法:

①每分鐘進水5升;②當4≤x≤12時,容器中水量在減少;

③若12分鐘后只放水,不進水,還要8分鐘可以把水放完;

④若從一開始進出水管同時打開需要24分鐘可以將容器灌滿.

以上說法中正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】

根據圖象可以得到單獨打開進水管4分鐘注水20升,而同時打開放水管,8分鐘內放進10升水,據此即可解答.

解:①每分鐘進水=5升,則命題正確;

②當4≤x≤12時,yx的增大而增大,因而容器中水量在增加,則命題錯誤;

③每分鐘放水5-=5-1.25=3.75升,

則放完水需要=8(分鐘),故命題正確;

④同時打開進水管和放水管,每分鐘進水=1.25升,則同時打開需要將容器灌滿需要的時間是=24(分鐘),命題正確.

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,購買一種蘋果,所付款金額y(元)與購買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購買5千克這種蘋果比分五次購買1千克這種蘋果可節(jié)省( 。┰

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據題意解答
(1)解不等式組
(2)如圖,在正方形ABCD中,點F為CD上一點,BF與AC交于點E,若∠CBF=20°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別是吊車在吊一物品時的示意圖,已知吊車底盤CD的高度為2米,支架BC的長為4米,且與地面成30°角,吊繩AB與支架BC的夾角為75°,吊臂AC與地面成75°角.
(1)求證:AB=AC
(2)求吊車的吊臂頂端A點距地面的高度是多少米?(保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)新增了一個化工項目,為了節(jié)約資源,保護環(huán)境,該企業(yè)決定購買A、B兩種型號的污水處理設備共8臺,具體情況如下表:

A型

B型

價格(萬元/臺)

12

10

月污水處理能力(噸/月)

200

160

經預算,企業(yè)最多支出89萬元購買設備,且要求月處理污水能力不低于1380噸.
(1)該企業(yè)有幾種購買方案?
(2)哪種方案更省錢,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=kx﹣2中,y隨x的增大而減小,則它的圖像可以是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

我們知道,任意兩點關于它們所連線段的中點成中心對稱,在平面直角坐標系中,任意兩點P(x1,y1)、Q(x2,y2)的對稱中心的坐標為(,).

觀察應用:

(1)如圖,在平面直角坐標系中,若點P1(0,﹣1)、P2(2,3)的對稱中心是點A,則點A的坐標為   

(2)另取兩點B(﹣1.6,2.1)、C(﹣1,0).有一電子青蛙從點P1處開始依次關于點A、B、C作循環(huán)對稱跳動,即第一次跳到點P1關于點A的對稱點P2處,接著跳到點P2關于點B的對稱點P3處,第三次再跳到點P3關于點C的對稱點P4處,第四次再跳到點P4關于點A的對稱點P5處,則點P3、P8的坐標分別為   、   

拓展延伸:

(3)求出點P2012的坐標,并直接寫出在x軸上與點P2012、點C構成等腰三角形的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調查中,調查方式選擇不合理的是  

A. 調查我國中小學生觀看電影厲害了,我的國情況,采用抽樣調查的方式

B. 調查全市居民對老年餐車進社區(qū)活動的滿意程度,采用抽樣調查的方式

C. 調查神州十一號運載火箭發(fā)射前零部件質量狀況,采用全面調查普查的方式

D. 調查市場上一批LED節(jié)能燈的使用壽命,采用全面調查普查的方式

查看答案和解析>>

同步練習冊答案