【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標都在格點上,且△A1B1C1與△ABC關于原點O成中心對稱,C點坐標為(-2,1)。

(1)請直接寫出A1的坐標   ;并畫出△A1B1C1

(2)P(a,b)是△ABC的AC邊上一點,將△ABC平移后點P的對稱點P'(a+2,b﹣6),請畫出平移后的△A2B2C2

(3)若△A1B1C1和△A2B2C2關于某一點成中心對稱,則對稱中心的坐標為   

【答案】(1)作圖見解析,A1(3,﹣4);

(2)作圖見解析;

(3)作圖見解析,中心對稱點O′的坐標為:(1,﹣3).

【解析】試題分析:(1)直接利用關于原點對稱點的性質得出對應點位置進而得出答案;(2)直接利用平移規(guī)律得出ABC平移后的位置;(3)利用所畫三角形連接對應點得出對稱中心.

試題解析:(1)如圖所示:A1B1C1即為所求,A1(3,﹣4);

(2)如圖所示:A2B2C2即為所求;

(3)如圖所示:中心對稱點O′的坐標為:(1,﹣3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,,結論:①;②;③;④,其中正確的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場統(tǒng)計了今年15A,B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成折線統(tǒng)計圖

1)該商場這段時間內(nèi)A.B兩種品牌冰箱月銷售量的中位數(shù)分別為 , ;

2)計算兩種品牌月銷售量的方差,比較并說明該商場15月這兩種品牌冰箱月銷售量的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)當a≠0時,求的值.(寫出解答過程)

(2)若a≠0,b≠0,且+ =0,則的值為   

(3)若ab>0,則++的值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖本題圖①,在等腰Rt中, ,,為線段上一點,以為半徑作于點,連接,線段、的中點分別為、、.

(1)試探究是什么特殊三角形?說明理由;

(2)將繞點逆時針方向旋轉到圖②的位置,上述結論是否成立?并證明結論;

(3),繞點在平面內(nèi)自由旋轉,求的面積y的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中:

0是最小的整數(shù);

有理數(shù)不是正數(shù)就是負數(shù);

正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù);

非負數(shù)就是正數(shù);

不僅是有理數(shù),而且是分數(shù);

是無限不循環(huán)小數(shù),所以不是有理數(shù);

無限小數(shù)不都是有理數(shù);

正數(shù)中沒有最小的數(shù),負數(shù)中沒有最大的數(shù).

其中錯誤的說法的個數(shù)為(  )

A.7B.6C.5D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點,EAD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF

1BDCD有什么數(shù)量關系,并說明理由;

2)當△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】423日是“世界讀書日”,某校文學社團隨機調查了部分學生,就“你最喜歡的圖書類別”(只選一項)對學生課外閱讀的情況作了調查統(tǒng)計,將調查結果統(tǒng)計后繪制成如下統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)統(tǒng)計圖表提供的信息解答下列問題:

初中生課外閱讀情況調查統(tǒng)計表

種類

頻數(shù)

頻率

卡通畫

a

0.56

時文雜志

32

b

武俠小說

c

0.15

文學名著

26

d

1)這次隨機調查了幾名學生?統(tǒng)計表中ad各代表什么數(shù)值?

2)試估計該校1500名學生中有多少名同學最喜歡文學名著類書籍?

3)結合以上統(tǒng)計數(shù)據(jù),請你站在文學社團的立場發(fā)表一下你的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,同時從點出發(fā),分別在上運動,若點的運動速度是每秒2個單位長度,且是點運動速度的2倍,當其中一個點到達終點時,停止一切運動.以為對稱軸作的對稱圖形.點恰好在上的時間為__秒.在整個運動過程中,與矩形重疊部分面積的最大值為________________

查看答案和解析>>

同步練習冊答案