【題目】如圖,在平面直角坐標系中,直線l1y=x+6y軸交于點A,直線l2y=kx+by軸交于點B,與l1相交于C(3,3)AO=2BO

1)求直線l2y=kx+b的解析式;

2)求△ABC的面積.

【答案】1y=2x3;(2SABC

【解析】

(1)根據(jù)y軸上點的坐標特征可求A點坐標,再根據(jù)AO=2BO,可求B點坐標,根據(jù)待定系數(shù)法可求直線l2的解析式;
(2)利用三角形面積公式即可求得.

解:(1)∵直線l1y=x+6y軸交于點A,

∴當x=0時,y=0+6=6

A(0,6)

AO=2BO,

B(0,﹣3)

C(3,3),

代入直線l2y=kx+b中得,

解得

故直線l2的解析式為y=2x3;

2SABCAB|xC|(6+3)×3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我們把能被13整除的數(shù)稱為“自覺數(shù)”,已知一個整數(shù),把其個位數(shù)字去掉,再從余下的數(shù)中加上個位數(shù)的4倍如果和是13的倍數(shù),則原數(shù)為“自覺數(shù)”,如果數(shù)字仍然太大不能直接觀察出來就重復(fù)此過程.如41641+4×665,65÷135,所以416是自覺數(shù);又如252812528+4×12532253+4×2261,26+4×130,因為30不能被13整除,所以25281不是“自覺數(shù)”.

1)判斷27365是否為自覺數(shù)   (填“是”或者“否”).

2)一個四位數(shù)n,規(guī)定Fn)=|a+db×c|,如:F2019)=|2+90×1|11,若四位數(shù)n能被65整除,且該四位數(shù)的千位數(shù)字和十位數(shù)字相同,其中1a4.求出所有滿足條件的四位數(shù)n中,Fn)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有七張正面分別標有數(shù)字﹣1、﹣2、0、1、2、3、4的卡片,除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程 + =2的解為正數(shù),且不等式組 無解的概率是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,ABx軸上,以AB為直徑的半圓⊙O‘y軸正半軸交于點C,連接BC,ACCD是半圓⊙O’的切線,AD⊥CD于點D

1)求證:∠CAD =∠CAB3分)

2)已知拋物線A、B、C三點,AB=10,tan∠CAD=

求拋物線的解析式(3分)

判斷拋物線的頂點E是否在直線CD上,并說明理由(3分);

在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(不寫求解過程);若不存在,請說明理由(3分).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDAB,BEAC,垂足分別為點D,E,BECD相交于點O.1=2,則圖中全等三角形共有( )

A. 4B. 3C. 2D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,延長的各邊,使得,,順次連接,得到為等邊三角形.

求證:(1;

2為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(3,3)、C(0,2),點B(b,0)x軸正半軸上一動點,點D是點A關(guān)于x軸的對稱點.

(1)寫出點D的坐標并用b表示四邊形AODB的面積S;

(2)連結(jié)CDx軸于P,試求APCP的和;

(3)在點B從左向右移動過程中,點B處于哪些位置時OBD是特殊的三角形?寫出點B的坐標并分別說明理由.

查看答案和解析>>

同步練習冊答案