【題目】一個(gè)不透明的布袋里裝有4個(gè)大小、質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,2,3,4,小明先從布袋中隨機(jī)摸出一個(gè)乒乓球,不放回去,再?gòu)氖O碌?/span>3個(gè)球中隨機(jī)摸出第二個(gè)乒乓球.
(1)求小明第一次摸出的乒乓球所標(biāo)數(shù)字是偶數(shù)的概率;
(2)請(qǐng)用樹(shù)狀圖或列表的方法求兩次摸出的乒乓球球面上數(shù)字的積為偶數(shù)的概率.
【答案】(1);(2)
【解析】
(1)可摸出的4個(gè)球中2個(gè)是偶數(shù),即可得到概率;
(2)共摸出2次,第一次有4種情況,第二次有3種情況,即可列樹(shù)狀圖.
(1)第一次摸球共有四種結(jié)果,分別為:1,2,3,4 其中偶數(shù)有兩種,
所以(為偶數(shù)).
(2)根據(jù)題意畫(huà)樹(shù)形圖如下:
由以上可知共有12種可能結(jié)果分別為:,,,,,,
,,,,,;
在以上12種可能結(jié)果中,兩個(gè)數(shù)字之積為偶數(shù)的只有10種,
所以(積為偶數(shù)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C處米的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計(jì)算結(jié)果用根號(hào)表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,AB=6,AD=8將矩形ABCD沿直線(xiàn)MN翻折后,點(diǎn)B恰好落在邊AD上的點(diǎn)E處,如果AE=2AM,那么CN的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△中,∠,點(diǎn)是邊上一點(diǎn),以為直徑的⊙與邊相切于點(diǎn),與邊交于點(diǎn),過(guò)點(diǎn)作⊥于點(diǎn),連接.
(1)求證:;
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷(xiāo)售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線(xiàn),∠C=45°,sinB=,AD=1.
(1)求BC的長(zhǎng);
(2)求tan∠DAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=(x>0)的圖象都經(jīng)過(guò)點(diǎn)A(2,2).
(1)分別求這兩個(gè)函數(shù)的表達(dá)式;
(2)如圖2,將直線(xiàn)OA向下平移n個(gè)單位長(zhǎng)度后與y軸交于點(diǎn)B,與x軸交于點(diǎn)C,與反比例函數(shù)圖象在第一象限內(nèi)的交點(diǎn)為D,連接OD,tan∠COD=.
①求n的值.
②連接AB,AD,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一張透明的平行四邊形膠片沿對(duì)角線(xiàn)剪開(kāi),得到圖①中的兩張三角形膠片和.將這兩張三角形膠片的頂點(diǎn)B與頂點(diǎn)E重合,把繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn),這時(shí)AC與DF相交于點(diǎn)O.
(1)當(dāng)旋轉(zhuǎn)至如圖②位置,點(diǎn)B(E),C,D在同一直線(xiàn)上時(shí),∠AFD與∠DCA的數(shù)量關(guān)系是 .
(2)當(dāng)繼續(xù)旋轉(zhuǎn)至如圖③位置時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)在圖③中,連接BO,AD,探索BO與AD之間有怎樣的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在矩形ABCD中,E,F分別是邊AB,AD上的點(diǎn),過(guò)點(diǎn)F作EF的垂線(xiàn)交DC于點(diǎn)H,以EF為直徑作半圓O.
(1)填空:點(diǎn)A (填“在”或“不在”)⊙O上;當(dāng)弦AE等于弦AF時(shí),的值是 ;
(2)如圖1,在△EFH中,當(dāng)FE=FH時(shí),求證:AD=AE+DH;
(3)如圖2,當(dāng)△EFH的頂點(diǎn)F是邊AD的中點(diǎn)時(shí),求證:EH=AE+DH;
(4)如圖3,點(diǎn)M在線(xiàn)段FH的延長(zhǎng)線(xiàn)上,若FM=FE,連接EM交DC于點(diǎn)N,連接FN,當(dāng)AE=AD時(shí),FN=4,HN=3,直接寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com