【題目】已知一次函數(shù)y=2x+4
(1)在如圖所示的平面直角坐標系中,畫出函數(shù)的圖象;
(2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標;
(3)在(2)的條件下,求出△AOB的面積;
(4)利用圖象直接寫出:當y<0時,x的取值范圍.

【答案】
(1)解:當x=0時y=4,當y=0時,x=﹣2,則圖象如圖所示


(2)解:由上題可知A(﹣2,0)B(0,4)
(3)解:SAOB= ×2×4=4
(4)解:x<﹣2
【解析】(1)利用兩點法就可以畫出函數(shù)圖象;(2)利用函數(shù)解析式分別代入x=0與y=0的情況就可以求出交點坐標;(3)通過交點坐標就能求出面積;(4)觀察函數(shù)圖象與x軸的交點就可以得出結論.本題考查了一次函數(shù)的圖象和一次函數(shù)圖象上點的坐標特征.正確求出一次函數(shù)與x軸與y軸的交點是解題的關鍵.
【考點精析】解答此題的關鍵在于理解一次函數(shù)的圖象和性質(zhì)的相關知識,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(點A在點B左側),與y軸交于點C,點D為頂點.

(1)求點B及點D的坐標.
(2)連結BD,CD,拋物線的對稱軸與x軸交于點E.
①若線段BD上一點P,使∠DCP=∠BDE,求點P的坐標.
②若拋物線上一點M,作MN⊥CD,交直線CD于點N,使∠CMN=∠BDE,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:( +1)( ﹣1)+(﹣2)0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點為A( ,1)的拋物線經(jīng)過坐標原點O,與x軸交于點B.

(1)求拋物線對應的二次函數(shù)的表達式;
(2)過B作OA的平行線交y軸于點C,交拋物線于點D,求證:△OCD≌△OAB;
(3)在x軸上找一點P,使得△PCD的周長最小,求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,田亮同學用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學知識是( 。
A.垂線段最短
B.經(jīng)過一點有無數(shù)條直線
C.經(jīng)過兩點,有且僅有一條直線
D.兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某蛋糕產(chǎn)銷公司A品牌產(chǎn)銷線,2015年的銷售量為9.5萬份,平均每份獲利1.9元,預計以后四年每年銷售量按5000份遞減,平均每份獲利按一定百分數(shù)逐年遞減;受供給側改革的啟發(fā),公司早在2104年底就投入資金10.89萬元,新增一條B品牌產(chǎn)銷線,以滿足市場對蛋糕的多元需求,B品牌產(chǎn)銷線2015年的銷售量為1.8萬份,平均每份獲利3元,預計以后四年銷售量按相同的份數(shù)遞增,且平均每份獲利按上述遞減百分數(shù)的2倍逐年遞增;這樣,2016年,A、B兩品牌產(chǎn)銷線銷售量總和將達到11.4萬份,B品牌產(chǎn)銷線2017年銷售獲利恰好等于當初的投入資金數(shù).
(1)求A品牌產(chǎn)銷線2018年的銷售量;
(2)求B品牌產(chǎn)銷線2016年平均每份獲利增長的百分數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】愛好思考的小茜在探究兩條直線的位置關系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
【特例探究】

(1)如圖1,當tan∠PAB=1,c=4 時,a= , b=
如圖2,當∠PAB=30°,c=2時,a= , b=;
(2)【歸納證明】請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.
(3)【拓展證明】如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州市中小學全面開展“體藝2+1”活動,某校根據(jù)學校實際,決定開設A:籃球,B:乒乓球,C:聲樂,D:健美操等四中活動項目,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制了兩幅不完整的統(tǒng)計圖.請回答下列問題:
(1)這次被調(diào)查的學生共有人.
(2)請你將統(tǒng)計圖1補充完整.
(3)統(tǒng)計圖2中D項目對應的扇形的圓心角是度.
(4)已知該校學生2400人,請根據(jù)調(diào)查結果估計該校最喜歡乒乓球的學生人數(shù).

查看答案和解析>>

同步練習冊答案