【題目】若關(guān)于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,則m的取值范圍是( )
A.m≠2
B.m=2
C.m≥2
D.m≠0

【答案】A
【解析】解:∵關(guān)于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,∴m-2≠0,解得:m≠2.故答案為:A.根據(jù)一元二次方程的定義,只含有一個(gè)未知數(shù),未知數(shù)的最高次數(shù)是2,并且二次項(xiàng)的系數(shù)不能為零得出不等式,∴m-2≠0,求解得出m的值 。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的O在矩形內(nèi)且與AB、AD均相切.現(xiàn)有動(dòng)點(diǎn)P從A點(diǎn)出發(fā),在矩形邊上沿著ABCD的方向勻速移動(dòng),當(dāng)點(diǎn)P到達(dá)D點(diǎn)時(shí)停止移動(dòng);O在矩形內(nèi)部沿AD向右勻速平移,移動(dòng)到與CD相切時(shí)立即沿原路按原速返回,當(dāng)O回到出發(fā)時(shí)的位置(即再次與AB相切)時(shí)停止移動(dòng).已知點(diǎn)P與O同時(shí)開(kāi)始移動(dòng),同時(shí)停止移動(dòng)(即同時(shí)到達(dá)各自的終止位置).

(1)如圖,點(diǎn)P從ABCD,全程共移動(dòng)了 cm(用含a、b的代數(shù)式表示);

(2)如圖,已知點(diǎn)P從A點(diǎn)出發(fā),移動(dòng)2s到達(dá)B點(diǎn),繼續(xù)移動(dòng)3s,到達(dá)BC的中點(diǎn).若點(diǎn)P與O的移動(dòng)速度相等,求在這5s時(shí)間內(nèi)圓心O移動(dòng)的距離;

(3)如圖,已知a=20,b=10.是否存在如下情形:當(dāng)O到達(dá)O1的位置時(shí)(此時(shí)圓心O1在矩形對(duì)角線BD上),DP與O1恰好相切?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將數(shù)字“6”旋轉(zhuǎn)180°,得到數(shù)字“9”,將數(shù)字“9”旋轉(zhuǎn)180°,得到數(shù)字“6”,現(xiàn)將數(shù)字“69”旋轉(zhuǎn)180°,得到的數(shù)字是(

A.96 B.69 C.66 D.99

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市為創(chuàng)建國(guó)家級(jí)森林城市,政府決定對(duì)江邊一處廢棄荒地進(jìn)行綠化,要求栽植甲、乙兩種不同的樹(shù)苗共6000棵,且甲種樹(shù)苗不得多于乙種樹(shù)苗.某承包商以26萬(wàn)元的報(bào)價(jià)中標(biāo)承包了這項(xiàng)工程.根據(jù)調(diào)查及相關(guān)資料表明:移栽一棵樹(shù)苗的平均費(fèi)用為8元,甲、乙兩種樹(shù)苗的購(gòu)買(mǎi)價(jià)及成活率如表:

設(shè)購(gòu)買(mǎi)甲種樹(shù)苗x棵,承包商獲得的利潤(rùn)為y元.請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

(1) 設(shè)y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2) 承包商要獲得不低于中標(biāo)價(jià)16%的利潤(rùn),應(yīng)如何選購(gòu)樹(shù)苗?

(3) 政府與承包商的合同要求,栽植這批樹(shù)苗的成活率必須不低于93%,否則承包商出資補(bǔ)栽;若成貨率達(dá)到94%以上(含94%),則政府另給予工程款總額6%的獎(jiǎng)勵(lì),該承包商應(yīng)如何選購(gòu)樹(shù)苗才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的多項(xiàng)式x3+(m+1)x2+x+2沒(méi)有二次項(xiàng),則m的值是( )

A. 2 B. -2 C. -1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(-1,y1)、B(2,y2)、C(-3,y3)在函數(shù)y=-5(x+1)2+3的圖像上,則y1、y2、y3的大小關(guān)系是( )
A.y1< y2< y3
B.y1< y3 < y2
C.y2 < y3 < y1
D.y3< y2 < y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BDCE;

(2)如圖2,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線上時(shí),將線段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AE,連接CE.請(qǐng)畫(huà)出圖形。上述結(jié)論是否仍然成立,并說(shuō)明理由;

(3)根據(jù)圖2,請(qǐng)直接寫(xiě)出AD、BD、CD三條線段之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)將三張形狀、大小完全相同的平行四邊形透明紙片分別放在方格紙中,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,并且平行四邊形 紙片的每個(gè)頂點(diǎn)與小正方形的頂點(diǎn)重合(如圖、圖、圖).

矩形(正方形)

,

分別在圖、圖、圖中,經(jīng)過(guò)平行四邊形紙片的任意一個(gè)頂點(diǎn)畫(huà)一條裁剪線,沿此裁剪線將平行四邊形紙片裁成兩部分,并把這兩部分重新拼成符合下列要求的幾何圖形.

要求:

(1)在左邊的平行四邊形紙片中畫(huà)一條裁剪線,然后在右邊相對(duì)應(yīng)的方格紙中,按實(shí)際大小畫(huà)出所拼成的符合要求的幾何圖形.

(2)裁成的兩部分在拼成幾何圖形時(shí)要互不重疊且不留空隙.

(3)所畫(huà)出的幾何圖形的各頂點(diǎn)必須與小正方形的頂點(diǎn)重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案