【題目】“五一”假期,某火車客運站旅客流量不斷增大,旅客往往需要長時間排隊等候檢票.經調查發(fā)現(xiàn),在車站開始檢票時,有640人排隊檢票.檢票開始后,仍有旅客繼續(xù)前來排隊檢票進站.設旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時,每分鐘候車室新增排隊檢票進站16人,每分鐘每個檢票口檢票14人.已知檢票的前a分鐘只開放了兩個檢票口.某一天候車室排隊等候檢票的人數(shù)y(人)與檢票時間x(分鐘)的關系如圖所示.
(1)求a的值.
(2)求檢票到第20分鐘時,候車室排隊等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內讓所有排隊的旅客都能檢票進站,以便后來到站的旅客隨到隨檢,問檢票一開始至少需要同時開放幾個檢票口?
【答案】
(1)
解:由圖象知,640+16a﹣2×14a=520,
∴a=10
(2)
解:設當10≤x≤30時,y與x之間的函數(shù)關系式為y=kx+b,由題意,得
,
解得: ,
y=﹣26x+780,當x=20時,
y=260,
即檢票到第20分鐘時,候車室排隊等候檢票的旅客有260人
(3)
解:設需同時開放n個檢票口,則由題意知
14n×15≥640+16×15
解得:n≥4 ,
∵n為整數(shù),
∴n最小=5.
答:至少需要同時開放5個檢票口
【解析】(1)根據(jù)原有的人數(shù)﹣a分鐘檢票額人數(shù)+a分鐘增加的人數(shù)=520建立方程求出其解就可以;(2)設當10≤x≤30時,y與x之間的函數(shù)關系式為y=kx+b,由待定系數(shù)法求出函數(shù)的解析式,再將x=20代入解析式就可以求出結論;(3)設需同時開放n個檢票口,根據(jù)原來的人數(shù)+15分進站人數(shù)≤n個檢票口15分鐘檢票人數(shù)建立不等式,求出其解即可.
科目:初中數(shù)學 來源: 題型:
【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學校參賽人數(shù)相等,比賽結束后,發(fā)現(xiàn)學生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:
乙校成績統(tǒng)計表
分數(shù)/分 | 人數(shù)/人 |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;
(2)請你將圖②補充完整;
(3)求乙校成績的平均分;
(4)經計算知s甲2=135,s乙2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,AD=4,CE平分∠ACB交AD于點E.以線段CE為弦作⊙O,且圓心O落在AC上,⊙O交AC于點F,交BC于點G.
(1)求證:AD與⊙O的相切;
(2)若點G為CD的中點,求⊙O的半徑;
(3)判斷點E能否為AD的中點,若能則求出BC的長,若不能請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校八年級共有三個班,都參加了學校舉行的書法繪畫大賽,三個班根據(jù)初賽成績分別選出了10名同學參加決賽,這些選手的決賽成績(滿分100分)如下表所示:
決賽成績(單位:分) | |
八年1班 | 80 86 88 80 88 99 80 74 91 89 |
八年2班 | 85 85 87 97 85 76 88 77 87 88 |
八年3班 | 82 80 78 78 81 96 97 87 92 84 |
解答下列問題:
(1)請?zhí)顚懴卤恚?/span>
平均數(shù)(分) | 眾數(shù)(分) | 中位數(shù)(分) | |
八年1班 | 85.5 |
| 87 |
八年2班 | 85.5 | 85 |
|
八年3班 |
| 78 | 83 |
(2)請從以下兩個不同的角度對三個班級的決賽成績進行
①從平均數(shù)和眾數(shù)相結合看(分析哪個班級成績好些).
②從平均數(shù)和中位數(shù)相結合看(分析哪個班級成績好些).
(3)如果在每個班級參加決賽的選手中分別選出3人參加總決賽,你認為哪個班級的實力更強一些?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(5,1). ①畫出△ABC關于y軸對稱的△A1B1C1 , 并寫出點C1的坐標;
②連結BC1 , 在坐標平面的格點上確定一個點P,使△B C1P是以B C1為底的等腰直角三角形,畫出△B C1P,并寫出所有P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)快到了,某市共青團組織以“中學生最喜歡項節(jié)日活動”為主題題進行了簡單的隨機抽樣調查,讓學生從“郊外踏青、品嘗美食、觀賞電影、參觀室館”四項活動中選擇一項,然后繪制出以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調查中共調查了人;扇形統(tǒng)計圖中郊外踏青部分的圓心角的度數(shù)是°;
(2)請補全條形統(tǒng)計圖;
(3)某市有中學生3萬人,請估計選擇郊外踏青的人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一部記錄片播放了關于地震的資料及一個有關地震預測的討論,一位專家指出:“在未來20年,A城市發(fā)生地震的機會是三分之二”
對這位專家的陳述下面有四個推斷:
①×20≈13.3,所以今后的13年至14年間,A城市會發(fā)生一次地震;
②大于50%,所以未來20年,A城市一定發(fā)生地震;
③在未來20年,A城市發(fā)生地震的可能性大于不發(fā)生地震的可能性;
④不能確定在未來20年,A城市是否會發(fā)生地震;
其中合理的是( 。
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛根據(jù)學習“數(shù)與式”的經驗,想通過由“特殊到一般”的方法探究下面二次根式的運算規(guī)律.
以下是小剛的探究過程,請補充完整;
(1)具體運算,發(fā)現(xiàn)規(guī)律.
特例1:;特例2:;特例3:;特例4: (舉一個符合上述運算特征的例子)
(2)觀察、歸納,得出猜想.
如果n為正整數(shù),用含n的式子表示這個運算規(guī)律; .
(3)證明猜想,確認猜想的正確性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com