【題目】如圖,大樓AB的高為16m,遠(yuǎn)處有一塔CD,小李在樓底A處測(cè)得塔頂D處的仰角為 60°,在樓頂B處測(cè)得塔頂D處的仰角為45°,其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)正下方,且A、C兩點(diǎn)在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)

【答案】塔CD的高度為37.9米

【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個(gè)直角三角形,即RtBEDRtDAC,利用已知角的正切分別計(jì)算,可得到一個(gè)關(guān)于AC的方程,從而求出DC

試題解析:作BECDE

可得RtBED和矩形ACEB

則有CE=AB=16,AC=BE

RtBED中,∠DBE=45°,DE=BE=AC

RtDAC中,∠DAC=60°DC=ACtan60°=AC

16+DE=DC

16+AC=AC,

解得:AC=8+8=DE

所以塔CD的高度為(8+24)米≈37.9米,

答:塔CD的高度為37.9米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明從P點(diǎn)出發(fā),沿北偏東60°方向行駛到達(dá)A處,接著向正南方向行駛100(+1)米到達(dá)B處.在B處觀測(cè)到出發(fā)時(shí)所在的P處在北偏西45°方向上,P,A兩處相距多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A0,a)、Bb0).

1)若a、b滿足a2+b28a4b+20=0.如圖,在第一象限內(nèi)以AB為斜邊作等腰RtABC,請(qǐng)求四邊形AOBC的面積S

2)如圖,若將線段AB沿x軸向正方向移動(dòng)a個(gè)單位得到線段DED對(duì)應(yīng)A,E對(duì)應(yīng)B)連接DO,作EFDOF,連接AFBF,判斷AFBF的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.

(1)用列表法表示出(x,y)的所有可能出現(xiàn)的結(jié)果;

(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上的概率;

(3)求小明、小華各取一次小球所確定的數(shù)x,y滿足y的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,,.解決下列問(wèn)題:

1= ,,=

2)若=2,則的取值范圍是 ;若=1,則的取值范圍是 ;

3)已知滿足方程組,求,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形AEFG的頂點(diǎn)E,G分別在正方形ABCDABAD邊上,連接B,交EF于點(diǎn)M,交FG于點(diǎn)N,設(shè)AE=a,AG=b,AB=cbac).

1)求證:

2)求AMN的面積(用a,b,c的代數(shù)式表示);

3)當(dāng)∠MAN=45°時(shí),求證:c2=2ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線my=﹣0.25x+h2+kx軸的交點(diǎn)為A,B,與y軸的交點(diǎn)為C,頂點(diǎn)為M3,6.25),將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為D

1)求拋物線n的解析式;

2)設(shè)拋物線nx軸的另一個(gè)交點(diǎn)為E,點(diǎn)P是線段DE上一個(gè)動(dòng)點(diǎn)(P不與D,E重合),過(guò)點(diǎn)Py軸的垂線,垂足為F,連接EF.如果P點(diǎn)的坐標(biāo)為(x,y),PEF的面積為S,求Sx的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出S的最大值;

3)設(shè)拋物線m的對(duì)稱軸與x軸的交點(diǎn)為G,以G為圓心,A,B兩點(diǎn)間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開(kāi)始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB,BC分別為線段,CD為雙曲線的一部分):

(1)分別求出線段AB和曲線CD的函數(shù)關(guān)系式;

(2)開(kāi)始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

(3)一道數(shù)學(xué)競(jìng)賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

同步練習(xí)冊(cè)答案