【題目】如圖,在△ABC中,BC=AC,∠C=90°,AC=7cm,AD是∠BAC的平分線,交BC于D,DE⊥AB于E,求△DEB的周長(zhǎng).
【答案】7cm.
【解析】
根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得CD=ED,再利用“HL”證明Rt△ACD和Rt△AED全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AC,然后求出△DEB的周長(zhǎng)=AB,在等腰直角三角形ABC中由勾股定理求出AB即可得解.
∵AD是∠BAC的平分線,DE⊥AB于E,∠C=90°,
∴CD=ED,
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
又∵AC=BC,
∴△DEB的周長(zhǎng)=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,
∵在△ABC中,BC=AC,∠C=90°,AC=7cm,
∴AB=cm,
∴△DEB的周長(zhǎng)=7cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)判斷四邊形ABDF的形狀,并說明理由;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在A地到B地的快速通道某隧道建設(shè),將由甲,乙兩個(gè)工程隊(duì)共同施工完成,據(jù)調(diào)查得知:甲,乙兩隊(duì)單獨(dú)完成這項(xiàng)上程所需天數(shù)之比為4:5,若先由甲,乙兩隊(duì)合作40天,剩下的工程再乙隊(duì)做10天完成,
(1)求甲.乙兩隊(duì)單獨(dú)完成這取工程各需多少天?
(2)若此項(xiàng)工程由甲隊(duì)做m天,乙隊(duì)n天完成,
①請(qǐng)用含m的式子表示n;
②已知甲隊(duì)每天的施工費(fèi)為15萬元,乙隊(duì)每天的施工費(fèi)用為10萬元,若工程預(yù)算的總費(fèi)用不超過1150萬元,甲隊(duì)工作的天數(shù)與乙隊(duì)工作的天數(shù)之和不超過90天.請(qǐng)問甲、乙兩隊(duì)各工作多少天,完成此項(xiàng)工程總費(fèi)用最少?最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(或方程組)解應(yīng)用題2019年是決勝全面建成小康社會(huì)、打好污染防治攻堅(jiān)戰(zhàn)的關(guān)鍵之年.為了解決垃圾回收最后一公里的難題,“小黃狗”智能垃圾分類回收環(huán)保公益項(xiàng)目通過大數(shù)據(jù)、人工智能和物聯(lián)網(wǎng)等先進(jìn)科技進(jìn)駐小區(qū)、寫字樓、學(xué)校、機(jī)關(guān)和社區(qū)等進(jìn)行回收.某位小區(qū)居民裝修房屋,在過去的一個(gè)月內(nèi)投放紙類垃圾和塑料垃圾共82公斤,其中紙類垃圾的投放是塑料垃圾的8倍多10公斤,請(qǐng)問這位小區(qū)居民在過去的一個(gè)月內(nèi)投放紙類垃圾和塑料垃圾分別是多少公斤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,且|c|>|a|.
(1)若|a+10|=20,b2=400,c的相反數(shù)是30,求a、b、c的值;
(2)在(1)的條件下,a、b、c分別是A、B、C點(diǎn)在數(shù)軸上所對(duì)應(yīng)的數(shù),
①線段AC的長(zhǎng)是________,將數(shù)軸折疊使得點(diǎn)A和點(diǎn)C重合,則折痕處在數(shù)軸上表示的數(shù)是__________
②數(shù)軸上是否存在一點(diǎn)P,使得P點(diǎn)到C點(diǎn)的距離加上P點(diǎn)到A點(diǎn)的距離減去P點(diǎn)到B點(diǎn)的距離為50,即PC+PAPB=50?若存在,求出P點(diǎn)在數(shù)軸上所對(duì)應(yīng)的數(shù);若不存在,請(qǐng)說明理由;
③點(diǎn)C,B分別以4個(gè)單位/秒和3個(gè)單位/秒的速度同時(shí)向右運(yùn)動(dòng),點(diǎn)A以7個(gè)單位/秒的速度向右運(yùn)動(dòng),是否存在常數(shù)m,使得3CA+2mOB-mOA為定值,若存在,請(qǐng)求出m值以及這個(gè)定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個(gè)邊長(zhǎng)均為2的正方形重疊在一起,O1、O2是其中兩個(gè)正方形的中心,則陰影部分的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某月的月歷
(1)如圖1,帶陰影的方框中的9個(gè)數(shù)的和與方框中心的數(shù)有什么關(guān)系?并試著說明理由;
(2)如果將陰影的方框移至圖2的位置,(1)中關(guān)系的關(guān)系還成立嗎?并試著說明理由;
(3)不改變陰影方框的大小,將方框移動(dòng)幾個(gè)位置試一試,你能得出什么結(jié)論?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為 。
(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說明理由.
(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com