作圖題:
(1)正三角形給人以“穩(wěn)如泰山”的美感,它具有獨特的對稱性,請你用三種不同的分割方法,將下列三個正三角形分別分割成四個等腰三角形.(在圖中畫出分割線,并標(biāo)出必要的角的度數(shù))

(2)如圖,已知在△ABC中,∠A=90°,請用圓規(guī)和直尺作⊙P,使圓心P在AC上,且與AB、BC兩邊都相切.(要求尺規(guī)作圖,保留作圖痕跡,不必寫出作法和證明)

【答案】分析:(1)等腰三角形的兩條邊相等,那么可根據(jù)相對的角相等來進行劃分;
(2)圓心P在AC上,且與AB、BC兩邊都相切,則P點是∠ABC的角平分線與AC的交點,以到AB的距離為半徑畫圓即可.
解答:解:(1)

(2)

點評:用到的知識點為:等腰三角形的性質(zhì)和判定;到一個角兩邊距離相等的點,在這個角的平分線上;切線的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、作圖題:如圖,先將△ABC向下平移4個單位得到△A1B1C1,再以直線l為對稱軸將△A1B1C1作軸反射得到△A2B2C2,請在所給的方格紙中依次作出△A1B1C1和△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、作圖題:
(1)正三角形給人以“穩(wěn)如泰山”的美感,它具有獨特的對稱性,請你用三種不同的分割方法,將下列三個正三角形分別分割成四個等腰三角形.(在圖中畫出分割線,并標(biāo)出必要的角的度數(shù))

(2)如圖,已知在△ABC中,∠A=90°,請用圓規(guī)和直尺作⊙P,使圓心P在AC上,且與AB、BC兩邊都相切.(要求尺規(guī)作圖,保留作圖痕跡,不必寫出作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作圖題:
(1)正三角形給人以“穩(wěn)如泰山”的美感,它具有獨特的對稱性,請你用三種不同的分割方法,將下列三個正三角形分別分割成四個等腰三角形.(在圖中畫出分割線,并標(biāo)出必要的角的度數(shù))

(2)如圖,已知在△ABC中,∠A=90°,請用圓規(guī)和直尺作⊙P,使圓心P在AC上,且與AB、BC兩邊都相切.(要求尺規(guī)作圖,保留作圖痕跡,不必寫出作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

作圖題:
(1)正三角形給人以“穩(wěn)如泰山”的美感,它具有獨特的對稱性,請你用三種不同的分割方法,將下列三個正三角形分別分割成四個等腰三角形.(在圖中畫出分割線,并標(biāo)出必要的角的度數(shù))

精英家教網(wǎng)

(2)如圖,已知在△ABC中,∠A=90°,請用圓規(guī)和直尺作⊙P,使圓心P在AC上,且與AB、BC兩邊都相切.(要求尺規(guī)作圖,保留作圖痕跡,不必寫出作法和證明)

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案