【題目】△ABC中,點O是AC邊上一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的平分線于E,交∠DCA的平分線于點F.
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

【答案】
(1)證明:當點O運動到AC中點時,四邊形AECF是矩形;理由如下:如圖所示:

∵CE平分∠BCA,

∴∠1=∠2,

又∵MN∥BC,

∴∠1=∠3,

∴∠3=∠2,

∴EO=CO,

同理,F(xiàn)O=CO,

∴EO=FO;


(2)解:∵OA=OC,

∴四邊形AECF是平行四邊形,

∵CF是∠BCA的外角平分線,

∴∠4=∠5,

又∵∠1=∠2,

∴∠1+∠5=∠2+∠4,

又∵∠1+∠5+∠2+∠4=180°,

∴∠2+∠4=90°,

∴平行四邊形AECF是矩形.


【解析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行線的性質(zhì)有∠1=∠3,等量代換有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可證四邊形AECF是平行四邊形,又CE、CF分別是∠BCA及其外角的角平分線,易證∠ECF是90°,從而可證四邊形AECF是矩形.
【考點精析】解答此題的關(guān)鍵在于理解矩形的判定方法的相關(guān)知識,掌握有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“x2倍與7的和不大于15”用不等式可表示為(

A.2x+715B.2x+7≤15C.2(x+7) 15D.2(x+7)≤15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AO、B三點在一直線上,∠AOC120°,ODOE分別是∠AOC,

∠BOC的平分線.

(1)判斷ODOE的位置關(guān)系;

(2)∠AOC大小發(fā)生變化時,ODOE仍分別是∠AOC、∠BOC的平分線,則ODOE的位置關(guān)系是否改變? 請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】外心在三角形的一邊上的三角形是______三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點的門票價格如表:

購票人數(shù)/

1~50

51~100

100以上

每人門票價/

12

10

8

某校七年級(1)、(2)兩班計劃去游覽該景點,其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團體購票,則只需花費816元.

(1)兩個班各有多少名學(xué)生?

(2)團體購票與單獨購票相比較,兩個班各節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設(shè)計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=2x2+1向右平移1個單位,再向下平移3個單位后所得到的拋物線為(

A.y=-2x+12-2B.y=-2x+12-4C.y=-2x-12-2D.y=-2x-12-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動中,研究三角形和正方形的性質(zhì)時,做了如下探究:
在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,

①BC與CF的位置關(guān)系為: ,
②BC,DC,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當點D在線段CB的延長線上時,(1)中的①,②結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請直接寫出GE的長.

查看答案和解析>>

同步練習冊答案