(2012•懷化)如圖,在?ABCD中,AD=8,點E、F分別是BD、CD的中點,則EF=
4
4
分析:由四邊形ABCD是平行四邊形,根據平行四邊形的對邊相等,可得BC=AD=8,又由點E、F分別是BD、CD的中點,利用三角形中位線的性質,即可求得答案.
解答:解:∵四邊形ABCD是平行四邊形,
∴BC=AD=8,
∵點E、F分別是BD、CD的中點,
∴EF=
1
2
BC=
1
2
×8=4.
故答案為:4.
點評:此題考查了平行四邊形的性質與三角形中位線的性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•懷化)如圖,已知AB∥CD,AE平分∠CAB,且交于點D,∠C=110°,則∠EAB為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•懷化)如圖,點P是⊙O外一點,PA是⊙O的切線,切點為A,⊙O的半徑OA=2cm,∠P=30°,則PO=
4
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•懷化)如圖,已知AB是⊙O的弦,OB=4,∠OBC=30°,點C是弦AB上任意一點(不與點A、B重合),連接CO并延長CO交⊙O于點D,連接AD、DB.
(1)當∠ADC=18°時,求∠DOB的度數(shù);
(2)若AC=2
3
,求證:△ACD∽△OCB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•懷化)如圖,四邊形ABCD是邊長為3
2
的正方形,長方形AEFG的寬AE=
7
2
,長EF=
7
2
3
.將長方形AEFG繞點A順時針旋轉15°得到長方形AMNH(如圖),這時BD與MN相交于點O.
(1)求∠DOM的度數(shù);
(2)在圖中,求D、N兩點間的距離;
(3)若把長方形AMNH繞點A再順時針旋轉15°得到長方形ARTZ,請問此時點B在矩形ARTZ的內部、外部、還是邊上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•懷化)如圖,拋物線m:y=-
1
4
(x+h)2+k與x軸的交點為A、B,與y軸的交點為C,頂點為M(3,
25
4
),將拋物線m繞點B旋轉180°,得到新的拋物線n,它的頂點為D;
(1)求拋物線n的解析式;
(2)設拋物線n與x軸的另一個交點為E,點P是線段ED上一個動點(P不與E、D重合),過點P作y軸的垂線,垂足為F,連接EF.如果P點的坐標為(x,y),△PEF的面積為S,求S與x的函數(shù)關系式,寫出自變量x的取值范圍,并求出S的最大值;
(3)設拋物線m的對稱軸與x軸的交點為G,以G為圓心,A、B兩點間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案