【題目】已知如圖所示,E、F是四邊形ABCD對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.

(1)求證:△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形嗎?請(qǐng)說(shuō)明理由.

【答案】
(1)

證明:∵DF∥BE,

∴∠DFA=∠BEC,

在△ADF和△CBE中,

,

∴△AFD≌△CEB(SAS)


(2)

四邊形ABCD是平行四邊形,

∵△AFD≌△CEB,

∴AD=BC,∠DAC=∠ECB,

∴AD∥BC,

∴四邊形ABCD是平行四邊形


【解析】(1)首先根據(jù)平行線的性質(zhì)可得∠DFA=∠BEC,再加上AF=CE,DF=BE可利用SAS定理證明△AFD≌△CEB;(2)首先根據(jù)△AFD≌△CEB可得AD=BC,∠DAC=∠ECB,然后證明AD∥CB,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算中,正確的是( 。

A. 2a+3b5abB. 2a3+3a25a5

C. 4a2b4ba20D. 6a24a20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)全等的含30°角的直角三角板重疊在一起,如圖,將△A′B′C′繞AC的中點(diǎn)M轉(zhuǎn)動(dòng),斜邊A′B′剛好過(guò)△ABC的直角頂點(diǎn)C,且與△ABC的斜邊AB交于點(diǎn)N,連接AA′、C′C、AC′.若AC的長(zhǎng)為2,有以下五個(gè)結(jié)論:①AA′=1;②C′C⊥A′B′;③點(diǎn)N是邊AB的中點(diǎn);④四邊形AA′CC′為矩形;⑤A′N=B′C= ,其中正確的有(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC中,∠C=90°,AB的垂直平分線MNBC于點(diǎn)D.

(1)如果∠CAD=20°,求∠B的度數(shù);

(2)如果∠CAB=50°,求∠CAD的度數(shù);

(3)如果∠CAD:DAB=1:2,求∠CAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,D、EAB上,且D、E分別是AC、BC的垂直平分線上一點(diǎn).

(1)若CDE的周長(zhǎng)為4,求AB的長(zhǎng);

(2)若∠ACB=100°,求∠DCE的度數(shù);

(3)若∠ACB=a(90°<a<180°),則∠DCE=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過(guò)點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說(shuō)法正確的是( 。

A. 若AD⊥BC,則四邊形AEDF是矩形

B. 若AD垂直平分BC,則四邊形AEDF是矩形

C. 若BD=CD,則四邊形AEDF是菱形

D. 若AD平分∠BAC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連結(jié)AG,分別交BD、CD于點(diǎn)E、F,連結(jié)CE.

(1)求證:∠DAE=∠DCE;

(2)當(dāng)CE=2EF時(shí),EG與EF的等量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB⊥BC,DC⊥BC,∠1=∠2,可得到BE∥CF,說(shuō)明過(guò)程如下,請(qǐng)?zhí)钌险f(shuō)明的依據(jù):

因?yàn)锳B⊥BC,DC⊥BC,

所以∠ABC=90°,

∠BCD=90°(______________),

所以∠ABC=∠BCD.

又因?yàn)椤?=∠2,

所以∠EBC=∠FCB.

所以BE∥CF(______________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x2=2x的根為____

查看答案和解析>>

同步練習(xí)冊(cè)答案