【題目】蔬菜公司采購了若干噸的某種蔬菜,計劃加工之后銷售,若單獨進行粗加工,需要20天才能完成;若單獨進行精加工,需要30天才能完成,已知每天單獨粗加工比單獨精加工多生產(chǎn)10噸.

1)求公司采購了多少噸這種蔬菜?

2)據(jù)統(tǒng)計,這種蔬菜經(jīng)粗加工銷售,每噸利潤2000元;經(jīng)精加工后銷售,每噸利潤漲至2500元.受季節(jié)條件限制,公司必須在24天內(nèi)全部加工完畢,由于兩種加工方式不能同時進行,公司為盡可能多獲利,安排將部分蔬菜進行精加工后,其余蔬菜進行粗加工,并恰好24天完成,加工的這批蔬菜若全部售出,求公司共獲得多少元的利潤?

【答案】1600噸;(21320000

【解析】

1)設(shè)這家公司采購這種蔬菜共x噸,根據(jù)每天單獨粗加工比單獨精加工多生產(chǎn)10噸列出方程,求出方程的解即可得到結(jié)果;

2)設(shè)精加工的蔬菜有y噸,則粗加工的蔬菜有(600)噸,根據(jù)24天恰好完成,列出方程,求出方程的解,然后求出利潤即可.

解:(1)設(shè)這家公司采購這種蔬菜共x噸,根據(jù)題意得:

,

解得:x=600,

答:該公司采購了600噸這種蔬菜.

2)設(shè)精加工y噸,則粗加工(600-y)噸,根據(jù)題意得:

,

解得:y=240

600-y=600-240=360(噸),

240×2500+360×2000=1320000(元);

答:該公司共獲得1320000元的利潤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD交于點O,DE平分OA于點E,若,則線段OE的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點ECD上,點FAB上,連接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如圖1,求證:四邊形DFBE是平行四邊形;

(2)如圖2,若ECD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線交于C,D兩點,其中點Cy軸上,點D的坐標(biāo)為。點Py軸右側(cè)的拋物線上一動點,過點PPEx軸于點E,交CD于點F.

1)求拋物線的解析式;

2)若點P的橫坐標(biāo)為m,當(dāng)m為何值時,以O,CP,F為頂點的四邊形是平行四邊形?請說明理由;

3)若存在點P,使PCF=450,請直接寫出相應(yīng)的點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填在表示它所在的集合里:

12,,

1)正數(shù)集合:{ }; 2)負(fù)數(shù)集合:{ };

3)整數(shù)集合;{ }; 4)分?jǐn)?shù)集合:{ }

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDABD,FGABG,EDBC,求證∠1=∠2.以下是推理過程,請你填空:

解:∵CDAB,FGAB

∴∠CDB=∠FGB90° 垂直定義)

   FG   

   =∠3    

又∵DEBC 已知

∴∠   =∠3 兩直線平行,內(nèi)錯角相等

∴∠1=∠2    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

1)請解釋圖中點D的橫坐標(biāo)、縱坐標(biāo)的實際意義;

2)求線段AB所表示的x之間的函數(shù)表達式;

3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,電子螞蟻PQ在邊長為1個單位長度的正方形ABCD的邊上運動,電子螞蟻P從點A出發(fā),以個單位長度/秒的速度繞正方形作順時針運動,電子螞蟻Q從點A出發(fā),以個單位長度秒的速度繞正方形作逆時針運動,則它們第2019次相遇在( )

A. AB. BC. CD. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解“陽光體育”活動的開展情況,從全校2000名學(xué)生中,隨機抽取部分學(xué)生進行問卷調(diào)查(每名學(xué)生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學(xué)生共有   人,并補全條形統(tǒng)計圖;

(2)在扇形統(tǒng)計圖中,m= ,n=   ,表示區(qū)域C的圓心角為  度;

(3)全校學(xué)生中喜歡籃球的人數(shù)大約有

查看答案和解析>>

同步練習(xí)冊答案