【題目】4月22日是世界地球日,為了增強(qiáng)學(xué)生環(huán)保意識,某中學(xué)八年級舉行了“環(huán)保知識競賽”活動,為了了解本次競賽情況,只抽取了部分學(xué)生的成績(滿分100分,得分均為正整數(shù))進(jìn)行統(tǒng)計,請你根據(jù)下面還未完成的頻數(shù)分布表和頻數(shù)分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | a | b |
(1)a= b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校八年級有500名學(xué)生,估計八年級學(xué)生中競賽成績高于80分的有多少人?
【答案】(1)12,0.24;(2)見解析;(3)八年級學(xué)生中競賽成績高于80分的有280人
【解析】
(1)根據(jù)頻數(shù)分布直方圖中的數(shù)據(jù)可以得到a的值,再根據(jù)分布表中的數(shù)據(jù),即可得到b的值;
(2)根據(jù)頻數(shù)分布表中的數(shù)據(jù)可以知道60.5~70.5的人數(shù),從而可以將直方圖補(bǔ)充完整;
(3)根據(jù)直方圖中的數(shù)據(jù)可以得到八年級學(xué)生中競賽成績高于80分的有多少人.
解:(1)由統(tǒng)計圖可得,
a=12,
b=12÷(4÷0.08)=0.24,
故答案為:12,0.24;
(2)補(bǔ)全的頻數(shù)分布直方圖如右圖所示
(3)500×(0.32+0.24)=500×0.56=280(人),
答:八年級學(xué)生中競賽成績高于80分的有280人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年9月,某手機(jī)公司發(fā)布了新款智能手機(jī),為了調(diào)查某小區(qū)業(yè)主對該款手機(jī)的購買意向,該公司在某小區(qū)隨機(jī)對部分業(yè)主進(jìn)行了問卷調(diào)查,規(guī)定每人只能從A類(立刻去搶購)、B類(降價后再去買)、C類(猶豫中)、D類(肯定不買)這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計圖,由圖中所給出的信息解答下列問題:
(1)扇形統(tǒng)計圖中B類對應(yīng)的百分比為 %,請補(bǔ)全條形統(tǒng)計圖;
(2)若該小區(qū)共有4000人,請你估計該小區(qū)大約有多少人立刻去搶購該款手機(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地.已知公路運價為1.5元/(噸·千米),鐵路運價為1.2元/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.
求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時,那么BE的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是等邊△ABC的外心,BO的延長線和⊙O相交于點D,連接DC,DA,OA,OC.
(1)求證:△BOC≌△CDA;
(2)若AB=,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2( ),
且∠1=∠4( )
∴∠2=∠4(等量代換)
∴CE∥BF( )
∴∠ =∠3( )
又∵∠B=∠C(已知)
∴∠3=∠B( )
∴AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB,BC,連結(jié)對角線AC,點O為AC的中點,點E為線段BC上的一個動點,連結(jié)OE,將△AOE沿OE翻折得到△FOE,EF與AC交于點G,若△EOG的面積等于△ACE的面積的,則BE=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com