【題目】如圖,過y軸上任意一點P,作x軸的平行線,分別與反比例函數(shù)的圖象交于A點和B點,若Cx軸上任意一點,連接AC,BC,則ABC的面積為( 。

A.3B.4C.5D.6

【答案】A

【解析】

先設(shè)P0,b),由直線ABx軸,則A,B兩點的縱坐標(biāo)都為b,而A,B分別在反比例函數(shù)的圖象上,可得到A點坐標(biāo)為(﹣,b),B點坐標(biāo)為(b),從而求出AB的長,然后根據(jù)三角形的面積公式計算即可.

解:設(shè)P0,b),

∵直線ABx軸,

AB兩點的縱坐標(biāo)都為b,

而點A在反比例函數(shù)y=﹣的圖象上,

∴當(dāng)ybx=﹣,即A點坐標(biāo)為(﹣,b),

又∵點B在反比例函數(shù)y的圖象上,

∴當(dāng)yb,x,即B點坐標(biāo)為(,b),

AB﹣(﹣)=,

SABCABOPb3

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax+2)(x6)(a0)與x軸交于C,D兩點(點C在點D的左邊),與y軸負(fù)半軸交于點A

1)若ACD的面積為16

①求拋物線解析式;

S為線段OD上一點,過Sx軸的垂線,交拋物線于點P,將線段SC,SP繞點S順時針旋轉(zhuǎn)任意相同的角到SC1SP1的位置,使點CP的對應(yīng)點C1,P1都在x軸上方,C1CP1S交于點M,P1Px軸交于點N.求的最大值;

2)如圖2,直線yx12ax軸交于點B,點M在拋物線上,且滿足∠MAB75°的點M有且只有兩個,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作一個30°角”的尺規(guī)作圖過程.

已知:平面內(nèi)一點A.

求作:∠A,使得∠A30°.

作法:如圖,

(1)作射線AB;

(2)在射線AB上取一點O,以O(shè)為圓心,OA為半徑作圓,與射線AB相交于點C;

(3)以C為圓心,OC為半徑作弧,與⊙O交于點D,作射線AD.

∠DAB即為所求的角.

請回答:該尺規(guī)作圖的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B45°,AC5cosC,ADBC邊上的高線.

1)求AD的長;

2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

1(x1)24

2x23x20

3x26x7

42(x2x)(x1)(x3)10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為等邊三角形,點D、E分別在ACAB上,且ADBE,連接BDCE交于點P,在ABC外部作∠ABF=∠ABD,過點AAFBF于點F,若∠ADB=∠ABF+90°BFAF3,則BP_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于第一、三象限內(nèi)的兩點,與軸交于點 .

⑴求該反比例函數(shù)和一次函數(shù)的解析式;

⑵在軸上找一點使最大,求的最大值及點的坐標(biāo);

⑶直接寫出當(dāng)時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點B80),等邊三角形OAB的頂點A在反比例函數(shù)y的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)把△OAB向右平移a個單位長度,對應(yīng)得到△OAB,當(dāng)這個函數(shù)圖象經(jīng)過△OAB一邊的中點時,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小明隨父母到某旅游勝地參觀游覽,他在游客中心O處測得景點A在其北偏東72°方向,測得景點B在其南偏東40°方向.小明從游客中心走了2千米到達(dá)景點A,已知景點B正好位于景點A的正南方向,求景點A與B之間的距離.(結(jié)果精確到0.1千米)

(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,sin40°≈0.64,tan40°≈0.84)

查看答案和解析>>

同步練習(xí)冊答案