【題目】如圖,已知AB=AC,AE=AFBECF交于點(diǎn)D,則①△ABE≌△ACF;②△BDF≌△CDE;③D∠BAC的平分線上,以上結(jié)論中,正確的是

A. 只有B. 只有

C. 只有D. ①②

【答案】D

【解析】

試題由AB=AC,AE=AF,公共角∠A可證得△ABE≌△ACF,即可得到∠B=∠C,再結(jié)合對(duì)頂角相等可得△BDF≌△CDE,得到CD=BD,從而證得△ACD≌△ABD.

∵AB=ACAE=AF,∠A=∠A

∴△ABE≌△ACF

∴∠B=∠C

∵AB=AC,AE=AF

∴CE=BF

∵∠CDE=∠BDF

∴△BDF≌△CDE

∴CD=BD

∵AB=AC,∠B=∠C

∴△ACD≌△ABD

∴D∠BAC的平分線上

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠用如圖甲所示的長(zhǎng)方形和正方形紙板做成如圖乙所示的 A、B 兩種長(zhǎng)方體形狀的無(wú)蓋紙盒.現(xiàn) 有正方形紙板 120 張,長(zhǎng)方形紙板 360 張,剛好全部用完,問(wèn)能做成多少個(gè) A 型盒子?則下列結(jié)論 正確的個(gè)數(shù)是(

①甲同學(xué):設(shè) A 型盒子個(gè)數(shù)為 x 個(gè),根據(jù)題意可得: 4x 3 360

②乙同學(xué):設(shè) B 型盒中正方形紙板的個(gè)數(shù)為 m 個(gè),根據(jù)題意可得: 3 4(120 m) 360

A 型盒 72 個(gè)

B 型盒中正方形紙板 48 個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 根據(jù)題意,完成推理填空:如圖,ABCD,∠1=∠2,試說(shuō)明∠B=∠D

解:∵∠1=∠2(已知)

   (內(nèi)錯(cuò)角相等,兩直線平行)

∴∠BAD+B180°(兩直線平行,同旁內(nèi)角互補(bǔ))

ABCD   

   +   180°,   

∴∠B=∠D   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017湖南株洲)如圖示,若ABC內(nèi)一點(diǎn)P滿足∠PAC=PBA=PCB,則點(diǎn)PABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)QDEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=( )

A. 5 B. 4 C. 3+ D. 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD中,AB=4,AD=m,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),連接CP,作點(diǎn)D關(guān)于直線PC的對(duì)稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).

(1)若m=6,求當(dāng)P,E,B三點(diǎn)在同一直線上時(shí)對(duì)應(yīng)的t的值.

(2)已知m滿足:在動(dòng)點(diǎn)P從點(diǎn)D到點(diǎn)A的整個(gè)運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)時(shí)刻t,使點(diǎn)E到直線BC的距離等于3,求所有這樣的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時(shí)BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD⊙O的直徑,點(diǎn)PCD延長(zhǎng)線上的一點(diǎn),且AP=AC

1)求證:PA⊙O的切線;

2)若PD=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們已經(jīng)知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).?dāng)?shù)學(xué)家已發(fā)現(xiàn)在一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方.如果設(shè)直角三角形的兩條直角邊長(zhǎng)度分別是ab,斜邊長(zhǎng)度是c,那么可以用數(shù)學(xué)語(yǔ)言表達(dá):a2+b2c2.已知,如圖,在長(zhǎng)方形ABCD中,AB4AD6.延長(zhǎng)BC到點(diǎn)E,使CE3,連接DE

1DE的長(zhǎng)為   

2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿BCCDDA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求當(dāng)t為何值時(shí),△ABP和△DCE全等?

3)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度僅沿著BE向終點(diǎn)E運(yùn)動(dòng),連接DP.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,是否存在t,使△PDE為等腰三角形?若存在,請(qǐng)直接寫出t的值;否則,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是關(guān)于的方程的一個(gè)實(shí)數(shù)根,并且這個(gè)方程的兩個(gè)實(shí)數(shù)根恰好是等腰三角形的兩條邊長(zhǎng),則的周長(zhǎng)為(

A. 6 B. 8 C. 10 D. 8或10

查看答案和解析>>

同步練習(xí)冊(cè)答案