【題目】計(jì)算
(1)(﹣4x2y3)(﹣ xyz)÷( xy2)2
(2)(54x2y﹣108xy2﹣36xy)÷(18xy)
(3)(a+b+3)(a+b﹣3)
(4)20070+2﹣2﹣( )2+2014.
【答案】
(1)解:(﹣4x2y3)(﹣ xyz)÷( xy2)2
=(﹣4x2y3)(﹣ xyz)÷( x2y4)
=2xz
(2)解:(54x2y﹣108xy2﹣36xy)÷(18xy)=3x﹣6y﹣2
(3)解:(a+b+3)(a+b﹣3)
=(a+b)2﹣9
=a2+2ab+b2﹣9
(4)解:20070+2﹣2﹣( )2+2014
=1+ ﹣ +2014
=2015
【解析】(1)先算積的乘方,再根據(jù)單項(xiàng)式的乘除法法則計(jì)算即可求解;(2)根據(jù)多項(xiàng)式除以單項(xiàng)式法則計(jì)算即可求解;(3)先根據(jù)平方差公式計(jì)算,再根據(jù)完全平方公式;(4)先算零指數(shù)冪,負(fù)整數(shù)指數(shù)冪,平方,再計(jì)算加減法即可求解.
【考點(diǎn)精析】掌握零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是解答本題的根本,需要知道零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)自然數(shù)若能表示為兩個(gè)自然數(shù)的平方差,則這個(gè)自然數(shù)稱為“智慧數(shù)”.比如:22﹣12=3,則3就是智慧數(shù);22﹣02=4,則4就是智慧數(shù).
(1)從0開始第7個(gè)智慧數(shù)是 v;
(2)不大于200的智慧數(shù)共有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長QC′交BA的延長線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時(shí),求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中一定是一元二次方程的是( )
A.x2﹣6x=x2+9
B.(x﹣1)(x+2)=0
C.ax2﹣6x=0
D.(a﹣3)x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2+8x+7=0,則配方正確的是( )
A.(x﹣4)2=9
B.(x+4)2=9
C.(x﹣8)2=16
D.(x+8)2=57
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種進(jìn)價(jià)為20元/個(gè)的水杯,其銷售量y(萬個(gè))與銷售價(jià)格x(元/個(gè))的變化如下表,銷售過程中的其他開支(不含成本)總計(jì)40萬元.
價(jià)格x(元/個(gè)) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個(gè)) | … | 5 | 4 | 3 | 2 | … |
(1)求出該公司銷售這種水杯的凈利潤z(萬元)與銷售價(jià)格x(元/個(gè))的函數(shù)關(guān)系式,并求出銷售價(jià)格定為多少時(shí)凈利潤最大?最大值是多少?
(2)該公司要求凈利潤不低于40萬元,請(qǐng)寫出銷售價(jià)格x(元/個(gè))的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com