已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.若cos∠MAN=,AE=,則陰影部分的面積=   
【答案】分析:由已知可得到∠MAN=60°,從而推出∠2=∠AFD=30°,根據(jù)等角對等邊得到EF=AE,再根據(jù)S=S△OEF-S扇形OEB即可求解.
解答:解:連接OE,
∵cos∠MAN=
∴∠MAN=60°.
∴∠2=∠MAN=×60°=30°.
∴∠AFD=90°-∠MAN=90°-60°=30°.
∴∠2=∠AFD=∠3=60°,
∴∠OEF=90°,EF=AE=,
在Rt△OEF中,tan∠OFE=,
∴tan30°=
∴OE=1,
∵∠4=∠2+∠3=60°,
∴S=S△OEF-S扇形OEB=×1×-=-π.
點評:本題考查了扇形的面積計算,解答本題的關鍵是仔細觀察圖形,找出不規(guī)則圖形面積的表示方法,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠精英家教網(wǎng)MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.
(1)猜想ED與⊙O的位置關系,并說明理由;
(2)若cos∠MAN=
1
2
,AE=
3
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.若cos∠MAN=
1
2
,AE=
3
,則陰影部分的面積=
3
2
-
1
6
π
3
2
-
1
6
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.

【小題1】猜想ED與⊙O的位置關系,并說明理由;
【小題2】若cos∠MAN=,AE=,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年達州市高中階段教育學校招生統(tǒng)一考試數(shù)學卷 題型:解答題

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.

【小題1】猜想ED與⊙O的位置關系,并說明理由;
【小題2】若cos∠MAN=,AE=,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年達州市階段教育學校招生統(tǒng)一考試數(shù)學卷 題型:解答題

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.

 

 

1.猜想ED與⊙O的位置關系,并說明理由;

2.若cos∠MAN=,AE=,求陰影部分的面積.

 

查看答案和解析>>

同步練習冊答案