【題目】某校在清明節(jié)前組織七年級全體學(xué)生進(jìn)行了一次緬懷先烈,牢記歷史知識競賽,賽后隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計,制作如下頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖中提供的信息,解答下列問題:

分?jǐn)?shù)段表示分?jǐn)?shù)

頻數(shù)

頻率

4

8

b

a

10

6

表中______,______,并補(bǔ)全直方圖;

若用扇形統(tǒng)計圖描述次成績統(tǒng)計圖分別情況,則分?jǐn)?shù)段對應(yīng)扇形的圓心角度數(shù)是______;

若該校七年級共900名學(xué)生,請估計該年級分?jǐn)?shù)在的學(xué)生有多少人?

【答案】(1)12;;補(bǔ)全圖形見解析;(2);(3)360

【解析】

先求出樣本總?cè)藬?shù),即可得出a,b的值,補(bǔ)全直方圖即可.

頻率即可;

全校總?cè)藬?shù)乘80分以上的學(xué)生頻率即可.

被調(diào)查的學(xué)生總?cè)藬?shù)為,

,

補(bǔ)全圖形如下:

故答案為:12、;

分?jǐn)?shù)段對應(yīng)扇形的圓心角度數(shù)是,

故答案為:;

估計該年級分?jǐn)?shù)在的學(xué)生有人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B、D分別在射線AN、AM.

(1)在圖1中,當(dāng)∠ABC=ADC=90°時,求證:AD+AB=AC

(2)若把(1)中的條件ABC=ADC=90°”改為∠ABC+ADC=180°,其他條件不變,如圖2所示,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了調(diào)查學(xué)生對課改實驗的滿意度,隨機(jī)抽取了部分學(xué)生作問卷調(diào)查:用A表示很滿意,B表示滿意,C表示比較滿意,D表示不滿意.工作人員根據(jù)問卷調(diào)查數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次問卷調(diào)查,共調(diào)查了多少名學(xué)生?

(2)將條形統(tǒng)計圖中的B等級補(bǔ)完整;

(3)求出扇形統(tǒng)計圖中,D等級所對應(yīng)扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABO的直徑,C、F為⊙O上兩點且點C為弧BF的中點,過點CAF的垂線,AF的延長線于點E,AB的延長線于點D

1求證DE是⊙O的切線;

2如果半徑的長為3tanD=,AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點P,給出如下定義:記點Px軸的距離為,到y軸的距離為,若,則稱為點P的最大距離;若,則稱為點P的最大距離.

例如:點P)到到x軸的距離為4,到y軸的距離為3,因為3 < 4,所以點P的最大距離為.

(1)①點A(2,)的最大距離為 ;

②若點B,)的最大距離為,則的值為 ;

(2)若點C在直線上,且點C的最大距離為,求點C的坐標(biāo);

(3)若⊙O存在M,使點M的最大距離為,直接寫出⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側(cè),BDl,AEl,垂足分別為DE.求證:△AEC≌△CDB;

2)類比探究:如圖2,RtABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉(zhuǎn)90°AB′,連接B′C,求△AB′C的面積.

3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點OBC上,且OC=3cm,動點P從點E沿射線EC2cm/s速度運(yùn)動,連結(jié)OP,將線段OP繞點O逆時針旋轉(zhuǎn)120°得到線段OF.要使點F恰好落在射線EB上,求點P運(yùn)動的時間ts

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,點P為直線AB上一個動點不與點A,B重合,連接DP,將DP繞點P旋轉(zhuǎn)得到EP,連接DE,過點ECD的垂線,交射線DCM,交射線ABN.

問題出現(xiàn):當(dāng)點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為______;

題探究:當(dāng)點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為______;

當(dāng)點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;

問題拓展:的條件下,若,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平面直角坐標(biāo)系中,把點A(m,4)m是實數(shù))向右移動7個單位向下移動2個單位得到點B,點B向左移動3個單位向上移動6個單位得到點C,請解答:

1 B,C的坐標(biāo)是:B C ;

2 ABC的面積;

3)若連接OC交線段AB于點D,且ACDBCD的面積比不超過0.75時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3mBC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

同步練習(xí)冊答案