【題目】已知關(guān)于 x 的一元二次方程 x2-2(a -1)x a2+ 2=0有兩個不相等的實數(shù)根.

(1)求實數(shù)a的取值范圍;

(2)-1可能是方程的一個根嗎?若是請求出它的另一個根,若不是,請說明理由.

【答案】1;(2)另一根為.

【解析】

1)根據(jù)題意直接由根的判別式大于零進(jìn)行分析可得答案;

2)由題意將x=-1代入方程求出a的值即可判斷,再解方程得出方程的另外一個根.

解:(1)根據(jù)題意知,△=4a-12-4a2+2)>0,

整理,得:-8a-40,

解得:a-.

2)將x=-1代入方程,得:1+2a-1+a2+2=0,

整理,得:a2+2a+1=0

解得:a=-1-

-1可能是方程的一個根,

當(dāng)a=-1時,方程為x2+4x+3=0,

解得:x=-1x=-3,

所以方程的另一個根為-3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某商品標(biāo)牌的示意圖,⊙O與等邊△ABC的邊BC相切于點C,且⊙O的直徑與△ABC的高相等,已知等邊△ABC邊長為4,設(shè)⊙OAC相交于點E,則AE的長為( 。

A.B.1C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明站在某廣場一看臺C處,從眼睛D處測得廣場中心F的俯角為21°,若CD=1.6米,BC=1.5米,BC平行于地面FA,臺階AB的坡度為i=34,坡長AB=10米,則看臺底端A點距離廣場中心F點的距離約為(參考數(shù)據(jù):sin21°≈0.36,cos21°≈0.93tan21°≈0.38)(  )

A.8.8B.9.5C.10.5D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),四邊形ABCD中,ABCD,∠ADC=90°,PA點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設(shè)P點的運動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運動到BC中點時,△PAD的面積為( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C分別在x、y軸的正半軸上,頂點B的坐標(biāo)為(4,2)點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)k0,x0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN

(1)當(dāng)點M是邊BC的中點時,求反比例函數(shù)的表達(dá)式;

(2)在點M的運動過程中,試證明:是一個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作思考)畫⊙和⊙的直徑、弦,使,垂足為(如圖1).猜想所畫的圖中有哪些相等的線段、相等的劣弧?(除外).

1)猜想:① ;② ;③

操作:將圖1中的沿著直徑翻折,因為圓是軸對稱圖形,過圓心的任意一條直線都是它的對稱軸,所以重合,又因為,所以射線與射線重合(如圖2),于是點與點重合,從而證實猜想.

(知識應(yīng)用)圖3是某品牌的香水瓶,從正面看上去(如圖4),它可以近似看作割去兩個弓形后余下的部分與矩形組合而成的圖形(點上),其中

2)已知⊙的半徑為,,求香水瓶的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的邊長為1,點邊上的一個動點(與,不重合),以為頂點在所在直線的上方作

1)當(dāng)經(jīng)過點時,

①請直接填空:________(可能,不可能)過點:(圖1僅供分析)

②如圖2,在上截取,過點作垂直于直線,垂足為點,作,求證:四邊形為正方形;

③如圖2,將②中的已知與結(jié)論互換,即在上取點點在正方形外部),過點作垂直于直線,垂足為點,作,若四邊形為正方形,那么是否相等?請說明理由;

2)當(dāng)點在射線上且不過點時,設(shè)交邊,且.在上存在點,過點作垂直于直線,垂足為點,使得,連接,則當(dāng)為何值時,四邊形的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個二次函數(shù)滿足以下條件:

①函數(shù)圖象與x軸的交點坐標(biāo)分別為A(1,0),B(x2,y2)(點B在點A的右側(cè));

②對稱軸是x=3;

③該函數(shù)有最小值是﹣2.

(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;

(2)將該函數(shù)圖象xx2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)行駛中的汽車撞到物體時,汽車的損壞程度通常用“撞擊影響”來衡量.汽車的撞擊影響I可以用汽車行駛速度v(km/min)來表示下表是某種型號汽車的行駛速度與撞擊影響的試驗數(shù)據(jù):

v(km/min)

0

1

2

3

4

I

0

2

8

18

32

(1)請根據(jù)上表中的數(shù)據(jù),在直角坐標(biāo)系中描出坐標(biāo)(v,I)所對應(yīng)的點,并用光滑曲線將各點連接起來;

(2)填寫下表,并根據(jù)表中數(shù)據(jù)的呈現(xiàn)規(guī)律,猜想用v表示I的二次函數(shù)表達(dá)式;

v(km/min)

1

2

3

4

(3)當(dāng)汽車的速度分別是1.5 km/min,2.5 km/min,4.5 km/min,利用你得到的撞擊影響公式計算撞擊影響分別是多少?

查看答案和解析>>

同步練習(xí)冊答案