【題目】陜西省相關(guān)文件規(guī)定,西安市實行居民階梯水價制度,對居民用水的基本水價實行三級價差,各階梯水價均為用戶終端水價,具體如下:

第一階梯:年用水量及以下,終端水價為/

第二階梯:年用水量(含),終端水價為/

第三階梯:年用水量以上,終端水價為/

城區(qū)居民階梯水價計量結(jié)算周期以年為單位,年用水量累計達(dá)到各階梯水量上限后,超出部分執(zhí)行下一階梯水價;年度周期之間水量不結(jié)轉(zhuǎn),不累計.

設(shè)某戶居民2019年的年用水量為,應(yīng)繳水費(fèi)為(元).

1)寫出該戶居民2019年的年用水量為含)的之間的函數(shù)表達(dá)式.

2)若該戶居民2019年的應(yīng)繳水費(fèi)為元,則該戶居民2019年的年用水量為多少.

【答案】1;(2

【解析】

1)根據(jù)實際問題列出函數(shù)表達(dá)式即可.

2)先判斷用水量在哪一階梯,再計算.

解:,即

知,當(dāng)時,

當(dāng)時,

,

該戶居民2019年的年用水量在以上,終端水價為/

當(dāng)時,

解得

答:該戶居民2019年的年用水量為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),連接,過于點(diǎn),過點(diǎn),其中的延長線于點(diǎn)

1)求證:的切線.

2)如圖,點(diǎn)上,且滿足,連接并延長交的延長線于點(diǎn)

①試探究線段之間滿足的數(shù)量關(guān)系.

②若,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若要在寬AD20米的城南大道兩邊安裝路燈,路燈的燈臂BC2米,且與燈柱AB120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應(yīng)該設(shè)計為多少米(結(jié)果保留根號)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點(diǎn)在之間,其部分圖象如圖所示.則下列結(jié)論:①;②;③;④為實數(shù));⑤點(diǎn),是該拋物線上的點(diǎn),則,其中,正確結(jié)論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線,點(diǎn)上,經(jīng)過點(diǎn),兩點(diǎn),與,分別交于點(diǎn)

1)求證:相切;

2)若,,求的半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+x+c經(jīng)過A4,0),B1,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求該拋物線的解析式;

2)在直線AC上方的拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位,均在格點(diǎn)上,按如下要求作圖.

1)將線段點(diǎn)按順時針方向旋轉(zhuǎn)90°,點(diǎn)對應(yīng)點(diǎn)為點(diǎn);

2)以為對角線畫一個各邊都不相等的四邊形,且,此時四邊形的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:

①CF=AE;②OE=OF;③圖中共有四對全等三角形;④四邊形ABCD是平行四邊形;其中正確結(jié)論的是_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,點(diǎn)P、Q分別在BC、CD上,∠PAQ=∠B

1)如圖1,若APBC,求證:APAQ;

2)如圖2,若點(diǎn)PBC上一點(diǎn),APAQ仍成立嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案