在一次科學探究實驗中,小明將半徑為5 cm的圓形濾紙片按圖1所示的步驟進行折疊,并圍成圓錐形.

(1)取一漏斗,上部的圓錐形內(nèi)壁(忽略漏斗管口處)的母線OB長為6 cm,開口圓的直徑為6 cm.當濾紙片重疊部分三層,且每層為圓時,濾紙圍成的圓錐形放入該漏斗中,能否緊貼此漏斗的內(nèi)壁(忽略漏斗管口處)?請你用所學的數(shù)學知識說明.

(2)假設(shè)有一特殊規(guī)格的漏斗,其母線長為6 cm,開口圓的直徑為7.2 cm,現(xiàn)將同樣大小的濾紙圍成重疊部分為三層的圓錐形,放入此漏斗中,且能緊貼漏斗內(nèi)壁.問重疊部分每層的面積為多少?

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在一次科學探究實驗中,小明將半徑為5cm的圓形濾紙片按圖1所示的步驟進行折疊,并圍成圓錐形.
(1)取一漏斗,上部的圓錐形內(nèi)壁(忽略漏斗管口處)的母線OB長為6cm,開口圓的直徑為6cm.當濾紙片重疊部分三層,且每層為
14
圓時,濾紙圍成的圓錐形放入該漏斗中,能否緊貼此漏斗的內(nèi)壁(忽略漏斗管口處),請你用所學的數(shù)學知識說明;
(2)假設(shè)有一特殊規(guī)格的漏斗,其母線長為6cm,開口圓的直徑為7.2cm,現(xiàn)將同樣大小的濾紙圍成重疊部分為三層的圓錐形,放入此漏斗中,且能緊貼漏斗內(nèi)壁.問重疊部分每層的面積為多少?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次科學探究實驗中,小明將半徑為5cm的圓形濾紙片按圖1所示的步驟進行折疊,并圍成圓錐形.

(1)取一漏斗,上部的圓錐形內(nèi)壁(忽略漏斗管口處)的母線OB長為6cm,開口圓的直徑為6cm.當濾紙片重疊部分三層,且每層為圓時,濾紙圍成的圓錐形放入該漏斗中,能否緊貼此漏斗的內(nèi)壁(忽略漏斗管口處),請你用所學的數(shù)學知識說明;

(2)假設(shè)有一特殊規(guī)格的漏斗,其母線長為6cm,開口圓的直徑為7.2cm,現(xiàn)將同樣大小的濾紙圍成重疊部分為三層的圓錐形,放入此漏斗中,且能緊貼漏斗內(nèi)壁.問重疊部分每層的面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(86):3.8 圓錐的側(cè)面積(解析版) 題型:解答題

在一次科學探究實驗中,小明將半徑為5cm的圓形濾紙片按圖1所示的步驟進行折疊,并圍成圓錐形.
(1)取一漏斗,上部的圓錐形內(nèi)壁(忽略漏斗管口處)的母線OB長為6cm,開口圓的直徑為6cm.當濾紙片重疊部分三層,且每層為圓時,濾紙圍成的圓錐形放入該漏斗中,能否緊貼此漏斗的內(nèi)壁(忽略漏斗管口處),請你用所學的數(shù)學知識說明;
(2)假設(shè)有一特殊規(guī)格的漏斗,其母線長為6cm,開口圓的直徑為7.2cm,現(xiàn)將同樣大小的濾紙圍成重疊部分為三層的圓錐形,放入此漏斗中,且能緊貼漏斗內(nèi)壁.問重疊部分每層的面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《圓(下)》中考題集(55):24.4 圓的有關(guān)計算(解析版) 題型:解答題

在一次科學探究實驗中,小明將半徑為5cm的圓形濾紙片按圖1所示的步驟進行折疊,并圍成圓錐形.
(1)取一漏斗,上部的圓錐形內(nèi)壁(忽略漏斗管口處)的母線OB長為6cm,開口圓的直徑為6cm.當濾紙片重疊部分三層,且每層為圓時,濾紙圍成的圓錐形放入該漏斗中,能否緊貼此漏斗的內(nèi)壁(忽略漏斗管口處),請你用所學的數(shù)學知識說明;
(2)假設(shè)有一特殊規(guī)格的漏斗,其母線長為6cm,開口圓的直徑為7.2cm,現(xiàn)將同樣大小的濾紙圍成重疊部分為三層的圓錐形,放入此漏斗中,且能緊貼漏斗內(nèi)壁.問重疊部分每層的面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:《24.4 弧長和扇形面積》2009年同步練習(解析版) 題型:解答題

在一次科學探究實驗中,小明將半徑為5cm的圓形濾紙片按圖1所示的步驟進行折疊,并圍成圓錐形.
(1)取一漏斗,上部的圓錐形內(nèi)壁(忽略漏斗管口處)的母線OB長為6cm,開口圓的直徑為6cm.當濾紙片重疊部分三層,且每層為圓時,濾紙圍成的圓錐形放入該漏斗中,能否緊貼此漏斗的內(nèi)壁(忽略漏斗管口處),請你用所學的數(shù)學知識說明;
(2)假設(shè)有一特殊規(guī)格的漏斗,其母線長為6cm,開口圓的直徑為7.2cm,現(xiàn)將同樣大小的濾紙圍成重疊部分為三層的圓錐形,放入此漏斗中,且能緊貼漏斗內(nèi)壁.問重疊部分每層的面積為多少?

查看答案和解析>>

同步練習冊答案