直角△ABC中,∠C=90°,AC=8,BC=6,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(陰影部分)的面積是(      )
A.B.C.D.
A

試題分析:先根據(jù)勾股定理求得AB的長,再利用扇形面積公式即可求得結(jié)果.
∵∠ACB=90°,AC=8,BC=6,
,

故選A.
點評:解答本題的關(guān)鍵是根據(jù)圖形的特征得到兩個扇形的面積的圓心角之和為90度,同事熟記扇形的面積公式
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于半圓,AB為直徑,設(shè)D是弧AC的中點,連接BD交AC于G,過D作DE⊥AB于E,交AC于F.
求證:FD=FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知等邊三角形ABC,以邊BC為直徑的半圓與邊AB、AC分別交于點D、點E,過點E作EF⊥AB,垂足為點F.

(1)判斷EF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)過點F作FH⊥BC,垂足為點H,若等邊△ABC的邊長為8,求FH的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓錐的母線長為6cm,底面圓的半徑為3cm,則此圓錐的表面展開圖的面積為(  )
A.18cm2B.36cm2C.24cm2D.27cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓A、圓B的半徑分別為4、2,且AB=12.若作一圓C使得三圓的圓心在同一直線上,且圓C與另兩個圓一個外切、一個內(nèi)切,則圓C的半徑長可能為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AD是△ABC的外接圓直徑,AD=,∠B=∠DAC,則AC的值為          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若圓錐的底面周長為3π,側(cè)面展開后所得扇形的圓心角為180°,則圓錐的側(cè)面積為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公園中央地上有一個大理石球,小明想測量球的半徑,于是找了兩塊厚10cm的磚塞在球的兩側(cè)(如圖所示),他量了下兩磚之間的距離剛好是60cm,聰明的你也能算出這個大石球的半徑嗎?寫出你的計算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若⊙O所在平面內(nèi)一點P到⊙O上的點的最大距離為a,最小距離為b(a>b),則此圓的直徑為( )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案