【題目】在直角三角形,兩條直角邊分別為6cm,8cm,斜邊長(zhǎng)為10cm,若分別以一邊旋轉(zhuǎn)一周(結(jié)果用π表示;你可能用到其中的一個(gè)公式,V圓柱=πr2h,V球體=V圓錐=h

1)如果繞著它的斜邊所在的直線旋轉(zhuǎn)一周形成的幾何體是?

2)如果繞著它的直角邊6所在的直線旋轉(zhuǎn)一周形成的幾何體的體積是多少?

3)如果繞著它的斜邊10所在的直線旋轉(zhuǎn)一周形成的幾何體的體積與繞著直角邊8所在的直線旋轉(zhuǎn)一周形成的幾何體的體積哪個(gè)大?

【答案】1)兩個(gè)圓錐形成的幾何體;

2V圓錐128π;

3)繞著直角邊8所在的直線旋轉(zhuǎn)一周形成的幾何體的體積大.

【解析】

試題分析:1)作斜邊上的高分成兩個(gè)直角三角形旋轉(zhuǎn)即可;

2)確定圓錐的高與半徑即可求出體積;

3)分別求出兩種圖形的體積,再比較即可.

解:(1)兩個(gè)圓錐形成的幾何體;

2V圓錐=πr2h=π×82×6=128π,

3如圖=,解得r=,

所以繞著斜邊10所在的直線旋轉(zhuǎn)一周形成的幾何體的體積為V圓錐=πr2h=π×2×10=76.8π

繞著直角邊8所在的直線旋轉(zhuǎn)一周形成的幾何體的體積為V圓錐=πr2h=π×62×8=96π,

故繞著直角邊8所在的直線旋轉(zhuǎn)一周形成的幾何體的體積大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列等式正確的是( )

A. -︱3︱=︱-3︱ B. ︱3︱=︱-3︱

C. ︱-3︱=-3 D. -﹙-3﹚=-︱-3︱

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)實(shí)驗(yàn)室:

點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、bA、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上AB兩點(diǎn)之間的距離AB=|a﹣b|

利用數(shù)形結(jié)合思想回答下列問(wèn)題:

數(shù)軸上表示25兩點(diǎn)之間的距離是 ,數(shù)軸上表示1﹣3的兩點(diǎn)之間的距離是

數(shù)軸上表示x﹣2的兩點(diǎn)之間的距離表示為 .?dāng)?shù)軸上表示x5的兩點(diǎn)之間的距離表示為

x表示一個(gè)有理數(shù),則|x﹣1|+|x+3|的最小值=

x表示一個(gè)有理數(shù),且|x+3|+|x﹣2|=5,則滿足條件的所有整數(shù)x的是

x表示一個(gè)有理數(shù),當(dāng)x ,式子|x+2|+|x﹣3|+|x﹣5|有最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用17個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無(wú)縫隙的大長(zhǎng)方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個(gè)小立方體,王亮所搭幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,C=90°,AC=3,BC=4,ABC外接圓O的半徑為 ,ABC內(nèi)切圓I的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,得到某種運(yùn)動(dòng)服每月的銷量與售價(jià)的相關(guān)信息如表:

售價(jià)(元/件)

100

110

120

130

月銷量(件)

200

180

160

140

已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件60元,設(shè)售價(jià)為x元.

(1)求月銷售m件與售價(jià)x元/件之間的函數(shù)表達(dá)式.

(2)設(shè)銷售該運(yùn)動(dòng)服的月利潤(rùn)為y元,寫出y與x之間的函數(shù)表達(dá)式,并求出售價(jià)x為多少時(shí),當(dāng)月的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為x=,且經(jīng)過(guò)點(diǎn)(2,0),有下列說(shuō)法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2.上述說(shuō)法正確的是( )

A.①②④ B.③④ C.①③④ D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等腰直角三角形,A=90°,點(diǎn)P、Q分別是AB、AC上的一動(dòng)點(diǎn),且滿足BP=AQ,D是BC的中點(diǎn).

(1)求證:PDQ是等腰直角三角形;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形APDQ是正方形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】82m×4n÷2m﹣n

(2)6m362m÷63m﹣2

(3)(a4a3÷a23

(4)(﹣10)2+(﹣10)0+10﹣2×(﹣102

(5)(x6y5+x5y4x4y3)÷x3y3

(6)x﹣(2x﹣y2)+(x﹣y2

(7)2﹣[x﹣(x﹣1)](x﹣1)

(8)5xy2﹣{2x2y﹣[3xy2﹣(xy2﹣2x2y)]÷(﹣xy)}.

查看答案和解析>>

同步練習(xí)冊(cè)答案