【題目】已知平面直角坐標系xOy,正方形OABC,點B(4,4),過邊BC上動點P(不含端點C)的反比例函數(shù)的圖象交AB邊于Q點,連結PQ,若把橫、縱坐標均為整數(shù)的點叫做好點,則反比例函數(shù)圖象與線段PQ圍成的圖形(含邊界)中好點個數(shù)為三個時,k的取值范圍為________.
【答案】2<k≤3;k=8
【解析】
由已知把橫、縱坐標均為整數(shù)的點叫做好點,則反比例函數(shù)圖象與線段PQ圍成的圖形(含邊界)中好點個數(shù)為三個時,畫出圖像,結合圖像根據好點的定義,就可得k的取值范圍.
解:如圖,
當反比例函數(shù)經過(1,3),(3,1)時,k=3;
當反比例函數(shù)經過(2,1)時,k=2,此時有5個好點;
∴k的取值范圍是2<x≤3;
當反比例函數(shù)經過(2,4)時,反比例函數(shù)圖象與線段PQ圍成的圖形(含邊界)中好點個數(shù)為三個,
∴k=8;
∴k的取值范圍為2<k≤3;k=8.
故答案為:2<k≤3;k=8.
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)號樓對外銷售,已知號樓某單元共層,一樓為商鋪,只租不售,二樓以上價格如下:第層售價為元/米,從第層起每上升一層,每平方米的售價提高元,反之每降一層,每平方米的售價降低元,已知該單元每套的面積均為米
優(yōu)惠活動
活動一:若一次性付清所有房款,降價,另免年物業(yè)費共元.
活動二:若購買者一次性付清所有房款,降價,無贈送.
(1)請在下表中,補充完整售價(元/米)與樓層(取正整數(shù))之間的的數(shù)關系式.
樓層(層) | 樓 | 樓 | ||
售價(元/米) | 不售 |
(2)某客戶想購買該單元第層的一套樓房,若他一次性付清購房款,可以參加如圖優(yōu)惠活動.請你幫助他分析哪種優(yōu)惠方案更合算
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經過原點和,與軸交于另一點,且對稱軸是.
(1)求二次函數(shù)的表達式;
(2)若是上的一點,作,交于點,當的面積最大時,求點的坐標;
(3)是軸上的點,過作軸,與拋物線交于點,過作軸于,是否存在點,使以點、、為頂點的三角形與以點、、為頂點的三角形相似?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(1,1)在拋物線y=x2+(2m+1)x﹣n﹣1上
(1)求m、n的關系式;
(2)若該拋物線的頂點在x軸上,求出它的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年12月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強.為了有效地避免交叉感染,需要采取以下防護措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹慎吃.某公司為了解員工對防護措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網上問卷調查的方式進行了隨機抽樣調查(每名員工必須且只能選擇一項),并將調查結果繪制成如下兩幅統(tǒng)計圖.
請你根據上面的信息,解答下列問題
(1)本次共調查了_______名員工,條形統(tǒng)計圖中________;
(2)若該公司共有員工1000名,請你估計不了解防護措施的人數(shù);
(3)在調查中,發(fā)現(xiàn)有4名員工對防護措施很了解,其中有3名男員工、1名女員工.若準備從他們中隨機抽取2名,讓其在公司群內普及防護措施,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線,,,…,(n為正整數(shù)),點A(0,1).
(1)如圖1,過點A作y軸垂線,分別交拋物線,,,…,于點,,,…,(和點A不重合).
①求的長.
②求的長.
(2)如圖2,點P從點A出發(fā),沿y軸向上運動,過點P作y軸的垂線,交拋物線于點,,交拋物線于點,,交拋物線于點,,……,交拋物線于點,(在第二象限).
①求的值.
②求的值.
(3)過x軸上的點Q(原點除外),作x軸的垂線分別交拋物線,,,…,于點,,,…,,是否存在線段(i,j為正整數(shù)),使,若存在,求出i+j的最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關系,并證明你的結論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經過點A(﹣1,0)、B(3,0)、C(0,3)三點.
(1)求拋物線的解析式.
(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N,若點M的橫坐標為m,請用m的代數(shù)式表示MN的長.
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年的3月15日是“國際消費者權益日”,許多家居商城都會利用這個契機進行打折促銷活動.甲賣家的某款沙發(fā)每套成本為5000元,在標價8000元的基礎上打9折銷售.
(1)現(xiàn)在甲賣家欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于20%?
(2)據媒體爆料,有一些賣家先提高商品價格后再降價促銷,存在欺詐行為.乙賣家也銷售相同的沙發(fā),其成本、標價與甲賣家一致,以前每周可售出8套,現(xiàn)乙賣家先將標價提高,再大幅降價元,使得這款沙發(fā)在3月15日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了,這樣一天的利潤達到了50000元,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com