【題目】如圖1,已知拋物線y=x2+bx﹣3(b是常數(shù))與x軸交與A,B兩點,與y軸交于點C,且點A坐標為(﹣1,0).
(1)求該拋物線的解析式和對稱軸;
(2)如圖2,拋物線的對稱軸與x軸交于點D,在對稱軸上找一個點E,使△OAC與△ODE相似,直接寫出點E的坐標;
(3)如圖3,平行于x軸的直線與拋物線交于P(x1,y1),Q(x2,y2)兩點,與直線BC交于點N(x3,y3).若x1<x2<x3時,結合圖象,求x1+x2+x3的取值范圍.
【答案】(1)y=x2﹣2x﹣3,x=1;(2)點E(1,﹣3)或(1,3)或(1,)或(1,﹣);(3)x1+x2+x3>5
【解析】
(1)由待定系數(shù)法可求解析式,可得對稱軸;
(2)分兩種情況討論,由相似三角形的性質可得求解;
(3)由二次函數(shù)的性質可得x1+x2=2,由題意可得x3>3,即可求解.
(1)∵拋物線y=x2+bx﹣3(b是常數(shù))與x軸交與A,B兩點,
∴0=1﹣b﹣3
∴b=﹣2,
∴拋物線解析式為:y=x2﹣2x﹣3,
當y=0時,x1=﹣1,x2=3,
∴B(3,0)
∴對稱軸為直線x=1;
(2)∵拋物線y=x2﹣2x﹣3與y軸交于點C,
∴點C(0,﹣3),且點A坐標為(﹣1,0),
∴OA=1,OB=3,
∵△OAC與△ODE相似,且∠AOC=∠ODE=90°,
∴或,
∴DE=3或,
∴點E(1,﹣3)或(1,3)或(1,)或(1,﹣),
(3)∵點B(3,0),點C(0,﹣3)
∴直線BC的解析式為:y=x﹣3,
∵平行于x軸的直線與拋物線交于P(x1,y1),Q(x2,y2)兩點,
∴點P,點Q關于對稱軸對稱,
∴x1+x2=2,
∵x1<x2<x3,
∴直線PQ在AB的上方,
∴x3>3,
∴x1+x2+x3>5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,直徑DE⊥AB于點F,交BC于點 M,DE的延長線與AC的延長線交于點N,連接AM.
(1)求證:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)新浪網調查,在第十二屆全國人大二中全會后,全國網民對政府工作報告關注度非常高,大家關注的網民們關注的熱點話題分別有:消費、教育、環(huán)保、反腐、及其它共五類,且關注五類熱點問題的網民的人數(shù)所占百分比如圖l所示,關注該五類熱點問題網民的人數(shù)的不完整條形統(tǒng)計如圖2所示,請根據(jù)圖中信息解答下列問題.
(1)求出圖l中關注“反腐”類問題的網民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計圖補充完整;
(2)為了深入探討政府工作報告,新浪網邀請成都市5名網民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表,請你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店以每件50元的價格購進800件恤,第一個月以單價80元銷售,售出了200件.第二個月如果單價不變,預計仍可售出200件,該商店為增加銷售量決定降價銷售,根據(jù)市場調查,單價每降低1元,可多銷售出10件,但最低單價應不低于50元,第二個月結束后,該商店對剩余的T恤一次性清倉,清倉時單價為40元.設第二個月單價降低元,
(1)填表(用含的代數(shù)式完成表格中的①②③處)
時間 | 第一個月 | 第二個月 | 清倉 |
單價(元) | 80 | _______ | 40 |
銷售量(件) | 200 | _______ | _______ |
(2)如果該商店希望通過銷售這800件恤獲利9000元,那么第二個月單價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD,邊長為4,E是邊BC上的一動點,連DE,取DE中點G,將GE繞E順時針旋轉90°到EF,連接CF,當CE為_____時,CF取得最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的布袋中,裝有紅、黃、白三種只有顏色不同的小球,其中紅色小球有6個,黃、白色小球的數(shù)量相同,為估計袋中黃色小球的數(shù)量,每次將袋中小球攪勻后摸出一個小球記下顏色放回,再攪勻多次試驗發(fā)現(xiàn)摸到紅色的頻率是,則估計黃色小球的個數(shù)是( 。
A.21B.40C.42D.48
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線C1:y1=﹣2x2+4x+2與C2:y2=﹣x2+mx+n的頂點相同”.
(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某高速公路建設中需要確定隧道AB的長度.已知在C處的飛機上,測量人員測得正前方A,B兩點處的俯角分別為60°和45°,AC的長為1000m.求隧道AB的長.(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com