【題目】如圖,AM切⊙O于點A,BD⊥AM于點D,BD交⊙O于點C,OC平分∠AOB.求∠B的度數(shù).

【答案】解:如右圖所示, ∵AM是切線,
∴OA⊥AM,
∴∠OAM=90°,
又∵BD⊥AM,
∴∠BDM=90°,
∴∠OAM=∠BDM,
∴AO∥BD,
∴∠AOC=∠BCO,∠AOB+∠OBC=180°,
又∵OB=OC,OC是∠AOB平分線,
∴∠OBC=∠OCB,∠BOC=∠AOC,
∴∠AOB=2∠OBC,
∴2∠OBC+∠OBC=180°,
∴∠OBC=60°.
答:∠B的度數(shù)是60°.

【解析】由于AM是切線,BD⊥AM,易得∠OAM=∠BDM=90°,從而可證OA∥BD,那么就有∠AOC=∠BCO,∠AOB+∠OBC=180°,而OB=OC,OC是∠AOB角平分線,易得∠AOB=2∠OBC,也就有2∠OBC+∠OBC=180°,從而可求∠B.
【考點精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識點,需要掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利民商店經(jīng)銷甲、乙兩種商品.現(xiàn)有如下信息:
請根據(jù)以上信息,解答下列問題:
(1)甲、乙兩種商品的進貨單價各多少元?
(2)該商店平均每天賣出甲商品500件和乙商品300件.經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價分別每降0.1元,這兩種商品每天可各多銷售100件.為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元.在不考慮其他因素的條件下,當(dāng)m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幢房屋的側(cè)面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測得FG∥EH,GH=2.6m,∠FGB=65°.
(1)求證:GF⊥OC;
(2)求EF的長(結(jié)果精確到0.1m). (參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當(dāng)PA的長度等于時,∠PAD=60°;當(dāng)PA的長度等于時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角坐標(biāo)系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3 . 設(shè)P點坐標(biāo)為(a,b),試求2S1S3﹣S22的最大值,并求出此時a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2)五個點,拋物線y=a(x﹣1)2+k(a>0)經(jīng)過其中的三個點.
(1)求證:C、E兩點不可能同時在拋物線y=a(x﹣1)2+k(a>0)上;
(2)點A在拋物線y=a(x﹣1)2+k(a>0)上嗎?為什么?
(3)求a和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,P為△ABC內(nèi)一點,連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個三角形與△ABC相似,那么就稱P為△ABC的自相似點.
(1)如圖②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中線,過點B作BE丄CD,垂足為E.試說明E是△ABC的自相似點;
(2)在△ABC中,∠A<∠B<∠C. ①如圖③,利用尺規(guī)作出△ABC的自相似點P(寫出作法并保留作圖痕跡);
②若△ABC的內(nèi)心P是該三角形的自相似點,求該三角形三個內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校部分男生分3組進行引體向上訓(xùn)練.對訓(xùn)練前后的成績進行統(tǒng)計分析,相應(yīng)數(shù)據(jù)的統(tǒng)計圖如下.
(1)求訓(xùn)練后第一組平均成績比訓(xùn)練前增長的百分?jǐn)?shù);
(2)小明在分析了圖表后,聲稱他發(fā)現(xiàn)了一個錯誤:“訓(xùn)練后第二組男生引體向上個數(shù)沒有變化的人數(shù)占該組人數(shù)的50%,所以第二組的平均成績不可能提高3個這么多.”你同意小明的觀點嗎?請說明理由;
(3)你認(rèn)為哪一組的訓(xùn)練效果最好?請?zhí)峁┮粋解釋來支持你的觀點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=kx﹣3(k≠0)的圖象與y軸交于點A,與反比例函數(shù)y= (x>0)的圖象交于點B(4,b).

(1)b=;k=
(2)點C是線段AB上的動點(與點A、B不重合),過點C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點D,求△OCD面積的最大值;
(3)將(2)中面積取得最大值的△OCD沿射線AB方向平移一定的距離,得到△O′C′D′,若點O的對應(yīng)點O′落在該反比例函數(shù)圖象上(如圖2),則點D′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.

(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上.
①如圖2,連接AC,當(dāng)P為AB的中點時,判斷△ACE的形狀,并說明理由;
②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時,求a:b及∠AEC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案