設(shè)a是從集合{1,2,3,…,99,100}中任意抽取的一個數(shù),則3a的末位數(shù)字是7的概率是   
【答案】分析:由于3a的末位數(shù)字是:31=3,32=9,33=7,34=1,…4個一循環(huán),可知集合{1,2,3,…,99,100},使3a的末位數(shù)字是7的有25個,再根據(jù)概率公式求解即可.
解答:解:∵31=3,32=9,33=7,34=1,…4個一循環(huán),
100÷4=25,
∴3a的末位數(shù)字是7的概率是=
故答案為:
點評:本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.解題的關(guān)鍵是找到3a的末位數(shù)字是7的情況數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)a是從集合{1,2,3,…,99,100}中任意抽取的一個數(shù),則3a的末位數(shù)字是7的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:解答題

在前面的學(xué)習(xí)中,我們通過對同一面積的不同表達(dá)和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式

這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因集合直觀而形象化。

【研究速算】

提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:

(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達(dá)方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構(gòu)成運算結(jié)果。

歸納提煉:

兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫四個長為,寬為的矩形,構(gòu)造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積

即:

歸納提煉:求關(guān)于的一元二次方程的解

要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)

【研究不等關(guān)系】

提出問題:怎么運用矩形面積表示的大小關(guān)系(其中)?

幾何建模:

(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為

畫點部分的面積可表示為,由圖形的部分與整體的關(guān)系可知:,即

歸納提煉:

當(dāng)時,表示的大小關(guān)系

根據(jù)題意,設(shè),,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

設(shè)a是從集合{1,2,3,…,99,100}中任意抽取的一個數(shù),則3a的末位數(shù)字是7的概率是________.

查看答案和解析>>

同步練習(xí)冊答案