【題目】從2016年1月1日開始,北京市居民生活用氣階梯價格制度將正式實施,一般生活用氣收費標準如下表所示,比如6口以下的戶年天然氣用量在第二檔時,其中350立方米按28元/m3收費,超過350立方米的部分按2.5元/m3收費.小冬一家有五口人,他想幫父母計算一下實行階梯價后,家里天然氣費的支出情況.

(1)如果他家2016年全年使用300立方米天然氣,那么需要交多少元天然氣費?
(2)如果他家2016年全年使用500立方米天然氣,那么需要交多少元天然氣費?
(3)如果他家2016年需要交1563元天然氣費,他家2016年用了多少立方米天然氣?

【答案】
(1)解:如果他家2016年全年使用300立方米天然氣,那么需要交天然氣費2.28×300=684(元)
(2)解:如果他家2016年全年使用500立方米天然氣,那么需要交天然氣費

2.28×350+2.5×(500﹣350)=798+375=1173(元)


(3)解:設小冬家2016年用了x立方米天然氣.

∵1563>1173,

∴小冬家2016年所用天然氣超過了500立方米.

根據(jù)題意得 2.28×350+2.5×(500﹣350)+3.9(x﹣500)=1563,

即 1173+3.9(x﹣500)=1563,

移項,得 3.9(x﹣500)=390.

系數(shù)化1得 x﹣500=100.

移項,得 x=600.

答:小冬家2016年用了600立方米天然氣


【解析】(1)根據(jù)一般生活用氣收費標準,可得小冬一家需要交天然氣費2.28×300,計算即可;(2)根據(jù)一般生活用氣收費標準,可得小冬一家需要交天然氣費2.28×350+2.5×(500﹣350),計算即可;(3)設設小冬家2016年用了x立方米天然氣.首先判斷出小冬家2016年所用天然氣超過了500立方米,然后根據(jù)他家2016年需要交1563元天然氣費建立方程,求解即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(
A.a2+a2=a4
B.a8÷a2=a4
C.(﹣a)2﹣a2=0
D.a2a3=a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在四邊形ABCD中,ABCD,E,F(xiàn)為對角線AC上兩點,且AE=CF,DFBE,AC平分BAD.求證:四邊形ABCD為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點O,若∠A=80°,則∠BOC=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面中,O為坐標原點,二次函數(shù)y=x2+bx+c的圖象與x軸的負半軸相交于點C(如圖),點C的坐標為(0,﹣3),且BO=CO

(1)求這個二次函數(shù)的解析式;

(2)設這個二次函數(shù)的圖象的頂點為M,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P,Q,R,S四個小球分別從正方形的四個頂點A,B,C,D同時出發(fā),以同樣的速度分別沿AB,BC,CD,DA的方向滾動,其終點分別是B,C,D,A.

(1)不管滾動多長時間,求證:連接四個小球所得的四邊形PQRS總是正方形.

(2)四邊形PQRS在什么時候面積最大?

(3)四邊形PQRS在什么時候面積為原正方形面積的一半?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點,連接DE,將△ADE繞點E旋轉(zhuǎn)180°得到△CFE,連接AF,AC

1)求證:四邊形ADCF是菱形;

2)若BC=8,AC=6,求四邊形ABCF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是正六邊形ABCDEF的中心,下列圖形中可由△OBC平移得到的是(  )

A.△OCD
B.△OAB
C.△OAF
D.△DEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a0)的圖象經(jīng)過點(0,3),且當x=1時,y有最小值2.

(1)求a,b,c的值;

(2)設二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)

①若二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的兩個交點的橫坐標x1,x2滿足,求k的值;

②請在二次函數(shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找一個點M、N,且不論k為何值,這兩個點始終關于x軸對稱,求出點M、N的坐標(點M在點N的上方).

查看答案和解析>>

同步練習冊答案