(2013•桂林)如圖,與∠1是同位角的是(  )
分析:根據同位角的定義:兩條直線被第三條直線所截形成的角中,若兩個角都在兩直線的同側,并且在第三條直線(截線)的同旁,則這樣一對角叫做同位角即可求解.
解答:解:觀察圖形可知,與∠1是同位角的是∠4.
故選C.
點評:考查了同位角、內錯角、同旁內角,三線八角中的某兩個角是不是同位角、內錯角或同旁內角,完全由那兩個角在圖形中的相對位置決定.在復雜的圖形中判別三類角時,應從角的兩邊入手,具有上述關系的角必有兩邊在同一直線上,此直線即為截線,而另外不在同一直線上的兩邊,它們所在的直線即為被截的線.同位角的邊構成“F“形,內錯角的邊構成“Z“形,同旁內角的邊構成“U”形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,則AE=
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,已知線段AB=10,AC=BD=2,點P是CD上一動點,分別以AP、PB為邊向上、向下作正方形APEF和PHKB,設正方形對角線的交點分別為O1、O2,當點P從點C運動到點D時,線段O1O2中點G的運動路徑的長是
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.求證:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過點D作DE⊥AD交AB于E,以AE為直徑作⊙O.
(1)求證:點D在⊙O上;
(2)求證:BC是⊙O的切線;
(3)若AC=6,BC=8,求△BDE的面積.

查看答案和解析>>

同步練習冊答案