年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖是某射擊選手5次設(shè)計成績的折線圖,根據(jù)圖示信息,這5次成績的眾數(shù)、中位數(shù)分別是( )
| A. | 7、8 | B. | 7、9 | C. | 8、9 | D. | 8、10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,PQ為圓O的直徑,點B在線段PQ的延長線上,OQ=QB=1,動點A在圓O的上半圓運(yùn)動(含P、Q兩點),以線段AB為邊向上作等邊三角形ABC.
(1)當(dāng)線段AB所在的直線與圓O相切時,求△ABC的面積(圖1);
(2)設(shè)∠AOB=α,當(dāng)線段AB、與圓O只有一個公共點(即A點)時,求α的范圍(圖2,直接寫出答案);
(3)當(dāng)線段AB與圓O有兩個公共點A、M時,如果AO⊥PM于點N,求CM的長度(圖3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側(cè)面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC, 且∠AOB=120°,折線NG-GH-HE-EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB上,則的值是 .
(2)如果一級樓梯的高度HE=cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F, 連結(jié)AF,BE相交于點P.
(1)若AE=CF.
①求證:AF=BE,并求∠APB的度數(shù).
②若AE=2,試求的值.
(2)若AF=BE,當(dāng)點E從點A運(yùn)動到點C時,試求點P經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點E,CD⊥MN于點F,P為EF上的任意一點,則PA+PC的最小值為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( )
| A. | 40° | B. | 45° | C. | 50° | D. | 55° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,直角三角形AOB中,∠AOB=90°,AB平行于x軸,OA=2OB,AB=5,反比例函數(shù) 的圖象經(jīng)過點A.
(1)直接寫出反比例函數(shù)的解析式;
(2)如圖②,P(x,y)在(1)中的反比例函數(shù)圖象上,其中1<x<8,連接OP,過O 作OQ⊥OP,且OP=2OQ,連接PQ.設(shè)Q坐標(biāo)為(m,n),其中m<0,n>0,求n與m的函數(shù)解析式,并直接寫出自變量m的取值范圍;
(3)在(2)的條件下,若Q坐標(biāo)為(m,1),求△POQ的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com